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1 INTRODUCTION 

Nascap-2k is a spacecraft charging and plasma interactions code designed to be used by 
spacecraft designers, aerospace and materials engineers, and space plasma environments experts 
to study the effects of both the natural and spacecraft-generated plasma environments on 
spacecraft systems.  

Designers of spacecraft for government, commercial, and research purposes require advanced 
modeling capabilities to guide the design of satellites that can survive and operate properly in the 
natural environment. Computer modeling of flight experiments (such as SCATHA (Spacecraft 
Charging at High Altitude),1 the SPEAR (Space Power Experiments Aboard Rockets)2,3 series, 
and CHAWS (Charging Hazards and Wake Studies)4) has demonstrated excellent ability to 
predict both steady-state and dynamic interactions between high-voltage spacecraft and the 
ambient plasma. This ability was also extended to inherently dynamic problems involving three-
dimensional space charge sheath formation, current flow in the quasi-neutral presheath, 
breakdown phenomena, plasma kinetics, ionization processes, and the effect of unsteady 
processes on spacecraft charging. 

Nascap-2k encapsulates the knowledge gained in these efforts as well as in modeling spacecraft 
with unique requirements and destined for disparate environments. This gives the spacecraft 
designer quality modeling capabilities by taking advantage of the present understanding of the 
pertinent phenomena, employing advanced algorithms, and implementing a state-of-the-art user 
interface, including three-dimensional post-processing graphics. 

The core capabilities of Nascap-2k are as follows: 

 Define spacecraft surfaces and geometry and the structure of the computational space
surrounding the spacecraft.

 Solve for time-dependent potentials on spacecraft surfaces.
 Solve the electrostatic potential around the object, with flexible boundary conditions on the

object and with space-charge computed either fully by particles, fully analytically, or in a
hybrid manner.

 Generate, track, and otherwise process particles of various species, represented as macro-
particles, in the computational space.

 View surface potentials, space potentials, particle trajectories, and time-dependent potentials
and currents.

Nascap-2k calculates surface charging in tenuous plasma environments, such as geosynchronous 
earth orbit (GEO) and interplanetary (Solar Wind) environments, using the Boundary Element 
Method5 (BEM). The Boundary Element Method facilitates calculation of surface electric fields 
(which limit the emission of photoelectrons and secondary electrons) without the need to grid the 
space surrounding the spacecraft. It also enables Nascap-2k to anticipate electric field changes 
due to surface charging, resulting in a smoother and more stable charging simulation. 

Nascap-2k uses a high-order, finite-element representation for the electrostatic potential that 
ensures electric fields are strictly continuous throughout space. The electrostatic potential solver 
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uses a finite element/conjugate gradient technique to solve for the potentials and fields on the 
spacecraft surface and throughout the surrounding space. Space charge density models presently 
include Laplacian, Linear, Nonlinear, Frozen Ions, Consistent with Ion Density, Full PIC 
(Particle-in-Cell), and Hybrid PIC.  

Particle tracking is used to simulate sheath currents, to study detector response, or to generate 
space charge evolution for dynamic calculations. Nascap-2k generates macroparticles (each of 
which represents a collection of particles) at a sheath boundary, the problem boundary, specified 
surface elements, throughout all space, or at user-specified locations. Particles are tracked for a 
specified amount of time, with the timestep automatically subdivided at each step of each 
particle to maintain accuracy. The current to each surface element of the spacecraft and 
optionally through each volume element is recorded for further processing.  

Nascap-2k User’s Manual is the primary document on the use of the code. This document, 
Nascap-2k Scientific Documentation, describes the physics and numeric models used in the 
surface charging, potential solution, and particle tracking portions of the code. Section 2, 
Physical Models, describes the physics models included in the code. Section 3, Numeric Models, 
describes the implementation. 

2 PHYSICAL MODELS 

Nascap-2k incorporates physical models appropriate to both tenuous (e.g., GEO orbit or 
interplanetary missions) and dense (e.g., LEO orbit) plasma environments. The code solves for 
environmentally-induced time-dependent potentials on spacecraft surfaces, the electrostatic 
potential about the object, and the resulting charged particle motion.  

Time-dependent surface currents are computed using orbit limited currents in tenuous plasma, 
tracked currents and/or analytic approximations in dense plasma, or a combination in 
intermediate environments.  

The electrostatic potential solver uses a conjugate gradient technique with flexible boundary 
conditions to solve Poisson’s equation for the potentials and fields throughout the computational 
space. Several analytic and numeric space charge density models are available.  

Particle tracking is used to study sheath currents, to study detector response, to generate steady-
state charge densities, and to generate space charge evolution for dynamic calculations. 

2.1 Surface Charging from Orbit Limited Currents 

Spacecraft surface charging is the accumulation of charge on spacecraft surfaces. As illustrated 
in Figure 1, several different current components can contribute to the charging.6,7,8, 9 First there 
are the incident charged particles. The impact of high-energy electrons and ions causes the 
ejection of secondary electrons into space. Incident electrons can also be reflected as backscatter. 
In sunlight, solar ultraviolet radiation generates low-energy photoelectrons which are ejected 
from the surface. Due to the low mass of electrons, the incident electron current is generally 
higher than the ion current. By itself, this would lead to negative charging. However, with the 
inclusion of the other terms, all of which contribute positive current, the net charge can be either 
positive or negative.  
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Figure 1. High Negative Potentials Can Result from the Accumulation of Charge on Spacecraft 
Surfaces. 

The rest of the spacecraft influences the potential and local electric field of each surface. Each 
conductor and each insulating spacecraft surface collects current from the plasma and is 
capacitively and resistively coupled to the other conductors and other surfaces. Additionally, 
some spacecraft have current sources, such as electron and ion guns, that contribute to the net 
current. Nascap-2k uses the spacecraft geometry, surface materials, plasma environment, and sun 
intensity and direction to calculate the time history of the surface potentials, electric fields, and 
fluxes. 

If the net current is initially negative or positive, the exposed surface begins to acquire a negative 
or positive potential respectively. As the magnitude of the potential increases, the net current is 
attenuated, until it eventually approaches zero and the surface potential reaches its equilibrium 
value. Negative potentials as high as ten kilovolts have been observed during geosynchronous 
substorms and over one kilovolt during auroral precipitation events. Because positive currents 
generally result from emission of low energy secondary electrons and photoelectrons, the 
positive potentials that can be attained are relatively modest. As soon as the surface reaches a 
potential greater than that of the emitted electrons they are re-attracted to the surface, so their 
contribution to the current is suppressed. The equilibrium potential is determined by the 
suppression of low energy electron emission due to the surface’s own electric field. A similar 
suppression effect may occur due to the electric fields of neighboring negative charged surfaces. 
This effect is the primary reason that accurate spacecraft surface charging calculations are 
inherently three dimensional.  

Positive potentials up to 100 V are possible in environments where the plasma current is small 
compared with the photo current (outer magnetosphere and in the solar wind). In these 
environments, the small incident plasma current is balanced by escape of the high energy tail of 
the photoelectron energy distribution, even though the bulk of the emitted photoelectrons return 
to the surface.  

Nascap-2k models the spacecraft as a collection of surfaces that are either conductive or are a 
dielectric film over a conductive substrate. The conductive surfaces and substrates can be at the 
same potential or biased with respect to each other. 

Approved for public release; distribution is unlimited.
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2.1.1 Plasma Environment 

In the orbit limited approximation of the current incident on a surface, the flux is calculated as 
that incident on a sphere of the same potential and depends only on the surface potential, and 
optionally an angle with respect to the direction of flow. This approximation applies if any 
charged particle far from the spacecraft can reach the surface, that is, there are no excluded 
orbits. For spacecraft this is generally true if the Debye length is long compared with the 
spacecraft size and the spacecraft is essentially convex with no self-shading. Calculations using 
the “Surface Charging” with “Analytic Currents” option use this approximation for both species, 
and calculations using the “Surface Charging” with “Tracked Ions and Analytic Electron 
Currents” option use this approximation for electron currents. 

The analytic current density to a surface at potential φ is given by integrating over the 
distribution function. 

 

( ) ( )
⌡

⌠
φ±








φ±

=
⌡

⌠
φ±








φ±

=

∞∞

LL

2

2

dEEF
E

EqdEEf
E

E
m
Ee2qj

 (1) 

Where the integration variable E represents the energy at the surface, the integration limit L is 0 
for the repelled species and |φ| for the attracted species, the fraction in parentheses represents the 
orbit limited enhancement or reduction of current, the upper sign is for ions and the lower sign is 
for electrons, f(E) is the distribution function at infinity, and F(E) is the flux at infinity. 
Depending on the model selected, the flux is given by one of the following formulas in which the 
particle energy E and the temperature θ are measured in electron volts, and the surface potential 
ϕ is measured in volts. 
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Fontheim (electrons only) 

This distribution is used to model auroral electrons. 
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where Η is the Heaviside step function, EL and EU are upper and lower energy limits, n 
is the plasma number density, e and me are the electron charge and mass, and the ζ's, θmax, 
E_0, Δ_gauss, and α are constants. 

 Kappa 
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κθ  Γ κ − 1   κθ
    2   

where κ [Greek kappa] is the kappa distribution parameter.  A kappa distribution is similar to a  
Maxwellian, but with a superthermal tail. Kappa must be greater than 1.  At large values of kappa  
(of order 10), the Kappa distribution reduces to a Maxwellian. 

Convected Maxwellian 
This distribution is used to model a flowing plasma. 

F(E, χ) = e 
2πθm 

E n exp−
θ  

 

E + mU2 2 − Em 2U cos χ 

θ  
 

(6) 

where U is the velocity of the plasma in the spacecraft frame of reference and χ is the angle 
between the flow vector and the incident velocity at infinity, which can be related to the velocity 
at which the particle strikes the surface. In this case, obtaining the flux to the surface requires 
integrating over angle as well as energy. 

Measured 

This option should be used with extreme caution as inadequately characterized environments can 
lead to numeric instabilities or unphysical results. 

F for E < E < E 
F(E) = ∑fi (E) where fi (E) =  

i i i+1 (7) 
i 0 otherwise

2.1.2 Barrier to Electron Collection 

An optional barrier height formula can be used in order to account for the reduction of current 
due to near surface electrostatic barriers. The barrier to electron collection is estimated to be the 
surface normal electric field times a representation of the length scale (the minimum of the 
radius of curvature, the Debye length, and the square root of the surface area) and is limited to be 
no larger than the difference between the surface potential and the minimum potential on any 
surface or volume node. 

2.1.3 Secondary and Backscattered Current 

The secondary and backscattered currents are given by 

∞ ⌠  E  
j = q Y

s,b (E) F(E ± φ)dE (8) 
s,b 

⌡ 
L 

 E ± φ  
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where Ys,b is the number of secondary or backscattered (respectively) electrons per incident 
charged particle (after accounting for the angular distribution of the incident particles) and F is 
the flux at infinity of the appropriate incident charged particle. 

We take the spectrum of emitted secondary electrons to be a Maxwellian characterized by a 
temperature of 2 eV. It follows that the effective secondary electron current from surfaces at 
positive potentials is reduced by a factor of exp(-φ/2) relative to Equation (8). If the surface 
potential is negative, the secondary electron current can still be reduced by an electron-attracting 
( )0>⋅nE  electric field caused by other, more negative surfaces, by negative potentials in a
nearby wake, or by the space charge of the emitted electrons themselves. 

2.1.4 Photocurrent 

For surfaces at negative potentials, the photocurrent depends on the surface material, angle of 
incident sunlight, and distance from the sun. As with secondaries, the photoelectron spectrum is 
by default taken to be a Maxwellian characterized by a temperature of 2 eV, so that current 
escaping from surfaces at positive potentials is reduced by a factor of exp(-φ/2).  

Spacecraft in the solar wind normally charge to positive potential (a few volts to tens of volts) to 
reduce the emitted photoelectron current to balance a very low incident current of ambient 
electrons. Unlike geosynchronous substorm charging, where the spacecraft goes negative, 
determining how positive the spacecraft charges requires knowledge of the high-energy portion 
of the photoelectron spectrum. To override the default, the user can supply this spectrum as either 
a table or as the sum of exponentials of the form θ−EAe .  

In magnetospheric or interplanetary space the space charge near a photoemitting surface is 
dominated by photoelectrons. This causes the potential to decrease with distance from the 
surface until loss of returning electrons together with spatial divergence reduces the 
photoelectron density to the order of the ambient plasma density. Both close (~0.1 AU) to the sun 
where photoemission is high and on a very large spacecraft (e.g., Solar Sail) for which 
divergence is low, the potential some distance from the surface can reach negative values. When 
this is the case, the minimum energy for photoelectron escape is increased beyond the surface 
potential. The barrier reduces the net photocurrent and lowers the surface potential. This problem 
was studied analytically by Guernsey and Fu,10 and, more recently, numerically by Ergun et al.11 

When the user requests that this space charge limiting of photocurrent be included in the surface 
potential calculation, the code computes a barrier height. If the space charge barrier exceeds the 
surface potential, the code reduces the net photocurrent and the secondary electron current. In 
addition to the photoemission current and the ambient plasma density, the preliminary Nascap-2k 
model depends on the effective radius of curvature of the surface element (estimated by φ/E, 
where E is the electric field [calculated using the boundary element method for the spacecraft at 
uniform potential φ] and constrained to be between 0.3 m to 2.0 m) and the shape of the 
photoemission spectrum (taken to be 9.8/E3/E6.1/E e4e21e53J −−− ++= 12). The effect of this 
algorithm on large, flat surfaces is to reduce the effective photoemission current from the interior 
of the surface (where effective radius of curvature is large) but not near the edges (where the 
effective radius of curvature is small). 

Approved for public release; distribution is unlimited.
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2.1.5 Other Current Sources 

Conduction Current through Insulators 

In surface charging calculations, the charge deposition thickness is short compared with the 
thickness of the insulator layer, and therefore, the electric field is spatially uniform throughout 
the layer and current is conducted through it. (Note: the range of a 40 keV electron in aluminum 
is ~15 microns [~ 0.0006 inches].) For insulating surface elements, the current through the layer 
to the underlying conductive substrate is given as a function of the conductivity and thickness of 
the layer by Ohm’s Law:  

d
jconduction ρ

φ∆
= (9) 

where ∆φ is the difference in potential between the surface and the conductive substrate and ρ 
and d are the resistivity and thickness of the layer respectively. 

Surface Conductivity 

Nascap-2k accounts for current flowing along surfaces. Current flows between insulating surface 
elements of a common material and with a common edge, transporting charge over a wide 
expanse of such material. The surface element to surface element conductivity is proportional to 
the length of the common edge and inversely proportional to the sum of the centroid-to-edges 
distances. For a surface element i having a common edge with j, Ri = (di/lij) ρ, where ρ is the 
surface resistivity, di is the distance from the centroid of surface element i to the center of the 
common edge, and lij is the length of the common edge. The surface conductance across the edge 
between adjoining surface elements i and j is  

Conductivity =
ji RR

1
+

. (10) 

A surface can be grounded by a strip at an element edge (grounding edge) or by a circular contact 
located at a node (grounding node).  

Charged Particle Emission 

Nascap-2k also allows for the inclusion of the current due to charged particle emission from a 
conductor (e.g., an electron gun). This capability is accessed by editing the script.  

2.1.6 Timescales 

Charged particles with energies below 50 keV penetrate less than a hundred microns into the 
spacecraft skin. While the time for the entire spacecraft to achieve net current balance is typically 
several milliseconds, the time for each surface to achieve its own equilibrium potential is 
thousands of times longer. The development of differences between the potentials of different 
surfaces is referred to as differential charging.  
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The rate of absolute charging is determined by the capacitance of the spacecraft to infinity, while 
the rate of differential charging is determined by the capacitance across the insulator layer. 
Nascap-2k does not take the presence of a plasma into account when computing the capacitance 
to space. The rate of change of the potential on a sphere is given by  

 oo

JR
R
I

4
1

dt
d

ε
=

πε
=

φ  (11) 

where I is the current to the sphere, J is the current density to the sphere surface, and R is the 
sphere radius. For a 1-meter sphere and a net current of 1 µA m-2, the sphere begins to charge at a 
rate of 100 kV s-1. As the sphere charges toward its steady-state (zero net current) potential, the 
net current decreases toward zero as electrons are repelled. Therefore, the charging rate decreases 
with time.  

The rate of change of the difference in potential across a dielectric layer is given by  

 
o

Jd
dt
d

ε
=

φ  (12) 

where d is the thickness of the layer. A 100 µm layer with the same incident current density 
charges at a rate of 10 V s-1. In this representative example, differential charging takes place 104 
times more slowly than absolute charging.  

2.1.7 Shadowing 

A surface element is shadowed from the sun if, either 

(1) Its normal points anti-sunward, or 
(2) Its centroid lies behind the projection of another sun-facing surface. 

Shadowing from the ram flow is handled in the same manner. 

2.1.8 Circuit Model 

Figure 2 shows a circuit diagram for a spacecraft with one insulating surface element and 
exposed conducting surfaces. The widely differing capacitances of surfaces to infinity, CA and CS 
and of the surface to spacecraft ground, CAS, make this a complex numeric problem.  

 
Farad10S

d
SC 6

0AS
−×≈εε=  (13) 

 
Farad10

R
S

R4
SR4CC 11

20SA
−×






≈








π
επ≈≈  (14) 

where ε, d, and S are the dielectric constant, thickness (m), and surface area (m2) of the 
insulating surface element, and R is the radius of a sphere approximating the size of the 
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spacecraft. The potentials as a function of time are computed using implicit time integration of 
the charging equations, which relate the derivative of the potential, Φ, with time to the current, I. 

( )
( ) AASSAAS

ASAASAA

IΦCΦΦC
IΦΦCΦC
=+−−

=−+




CAS

VA

V=0

CS

CA

ISIA

Spacecraft
chassis ground

Plasma ground

VS

Insulating surface

All conductive surfaces

Figure 2. Circuit Model of a Spacecraft with One Insulating Surface Element. 

The multi-surface problem is solved by linearizing the currents and inverting the matrix. 

( )ΦIΦC =  (15) 

2.2 Material Properties 

The properties of the spacecraft surface materials determine the charging rates and equilibrium 
surface potentials. Nascap-2k uses the models of secondary electrons due to incident electrons, 
secondary electrons due to incident ions, backscattered electrons, and photoelectrons originally 
developed for NASCAP/GEO.13  

2.2.1 Secondary Electron Emission Due to Electron Impact 

Secondary electrons are those emitted from a surface with energies below 50 eV in response to 
energy deposited near the surface by incident electrons. Their energy distribution is usually 
peaked below 10 eV. The secondary yield, Yee, is the ratio of primary to secondary electron 
current. 

ee
emitted secondary current due to electron impactY

primary electron current
= (16) 

A typical curve is shown in Figure 3. 
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Figure 3. Electron Secondary Yield as a Function of Incident Energy. 

The secondary electron emission yield can be calculated using the empirical formula14: 

 
( )

R x cos
ee

0

dEY C e dx
dx

−α ψψ = ∫  (17) 

where x is the path length of penetration of a primary electron beam into the material, R is the 
“range,” or maximum penetration length, and ψ is the angle of incidence of the primary electron. 

This equation is based on a simple physical model15: 

1. The number of secondary electrons produced by the primary beam at a distance x is 
proportional to the energy loss of the beam or “stopping power” of the material, 

( ) dES E dx= .  

2. The fraction of the secondaries that migrate to the surface and escape decreases 
exponentially with depth ( x cosf e−α ψ= ). Thus only secondaries produced within a few 
multiples of the distance 1/α (the depth of escape) from the surface contribute significantly 
to the observed yield.  

The stopping power for incident electrons of energy E is related to the range of these electrons 
through the equation 

  (18) 

The usual formulation for the range is that it increases with the energy, E of the incident 
electrons in a way that approximates a simple power law16:  

 
qR bE=  (19) 
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where q is a bit less than 2 for electrons with energy ≲ 300 keV. Because the primary beam loses 
energy as it passes through the material, E and S(Eo, x) depend on the path length x, where Eo is 
the initial electron energy. The stopping power can be written as 

( )
1 1 1 q

o
dE dR 1 bS E , x
dx dE qb R x

− −
 = = =  − 

(20) 

Figure 4 shows S(Eo, x) plotted against x for several values of Eo. Inspection of Figure 4 and the 
equation for S(x) illustrates the following points: 

1. S(Eo, x) increases with x, slowly at first, before reaching a singularity as x approaches R.

2. The initial value of S(Eo, x) decreases with increasing initial energy Eo.

Both of these observations are due to the decrease in electron-atom collision cross-section with 
increasing energy.  

Figure 4. Energy Deposition Profiles of Normally Incident Primary Electrons for Four Incident 
Energies o

1E , o
2E , o

3E , and o
4E  and Corresponding Yield Curve.

The yield is only sensitive to the details of the stopping-power depth-dependence for initial 
energies with ranges of the same order as the escape depth, R ~ 1/α (i.e., about the maximum of 
the yield curve). For lower energies, R << 1/α, essentially all the primary energy is available for 
detectable secondary production, leading to a linear increase in yield with increasing Eo. At 
higher energies, where R >> 1/α, S(Eo,x) remains almost constant over the depth of escape. 
Therefore, along with S(Eo,x), the yield decreases as Eo increases. 

Taking this into account, the stopping power can be approximated by a linear expansion in x, 
about x = 0. 
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  (21) 

The simple power law does not adequately describe the available experimental data. The range 
has different exponents for low energy and high energy. A bi-exponential range law with four 
parameters b1, b2, q1, q2 fits the experimental data better. 

 
1 2q q

1 o 2 oR b E b E= +  (22) 

Figure 5 shows CSDA (Continuous Slowing Down Approximation) range values for Aluminum 
for energies from 20 eV to 100 keV. Note the drastic change in behavior near 300 eV. The bi-
exponential formula 7269.12335.0 E15.245E63.142R +=  fits well throughout the range plotted. 

 

Figure 5. CSDA Range for Electrons in Aluminum. Low Energy Values (Blue Diamonds) from Ashley 
et al. (Reference 17). High Energy Values (Red Squares) from NIST ESTAR* Database. Dashed Line is 
Bi-exponential Fit. 

For materials where no suitable data is available, a mono-exponential form can be generated 
using Feldman’s empirical relationships16, connecting b and n to atomic data.  

 
q 2

massb 250W Z= ρ  (23) 

 ( )10q 1.2 1 0.29log Z= −  (24) 

where W is the atomic or molecular weight of the material, Z is the atomic number, and ρmass is 
the mass density in gm cm-3. Then E is in keV and R is in angstroms. The stopping power is then 

* National Institute of Standards and Technology Electron STopping power And Range database available at 
http://www.nist.gov/pml/data/star/index.cfm 
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obtained indirectly with the above equation. Theoretical estimates of the stopping power for a 
number of materials are available from Ashley et al.17 Comparison of these values with those 
implied by the range data showed significant discrepancies, particularly for those materials fit 
using Feldman’s formula. The best approach is to fit the four parameters in the equation for R 
directly to the stopping power data. 

( )1 2
1q 1 q 1

1 1 2 2S q b E q b E
−− −= + (25) 

The secondary electron yield depends on angular distribution of the incident electrons. For low 
energy electrons, all the energy is deposited near the surface regardless of incident angle, so the 
yield is independent of incident angle. For high energy electrons the stopping power is constant 
in the near-surface region, so the yield is proportional to the path length near the surface, or 
inversely proportional to cosψ. It follows that the yield for high energy isotropic electrons is 
double that for normally incident electrons of the same energy. The isotropic yield curve makes a 
transition from being equal to the normal incidence curve at low energy to double at high energy. 
The maximum yield for isotropic electrons is somewhat higher than for normal electrons, and 
occurs at somewhat higher energy. 

2.2.2 Secondary Electron Emission Due to Ion Impact 

Secondary emission of electrons due to ion impact can be treated in a way similar to that for 
electron impact. The yield is given by  

( )
d x cos

ie
0

dEY C e dx
dx

−α ψψ = ∫ (26) 

Where C is the normal incidence yield at 1 keV as extrapolated from date taken at energies 
greater than 10 keV. The stopping power is assumed to be independent of path length x over the 
thickness, d, of the sample. Above 10 keV, the stopping power is approximately proportional to 
the velocity, and at higher energies (above ~200 keV) it is inversely proportional to the 
velocity18. Below 10 keV, it is lower. 

( )
max

21

EE1
EE

dx
dE

+
β

= (27) 

Emax is the energy at the maximum in the yield curve. This is approximately 100 keV for most 
materials. 

( )










<
≤≤

<

=β







 −−

EkeV101
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1

 (28) 
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As the CSDA range is at least comparable to the mean depth of secondary electron production 
for protons above 1 keV (140 angstroms of aluminum), we consider the proton yield to vary 
inversely with the cosine of the incident angle, so that the isotropic incidence yield is double the 
normal incidence yield. This is usually an adequate treatment, because the ion fluxes are almost 
always low, and the effect of secondary emission is to mildly augment the incident ion flux, 
rather than canceling it as is the case with incident electrons. 

The secondary emission properties due to the impact of ions other than protons are assumed to be 
identical to the proton values for the same energy.  

The secondary electron yield curve for protons incident on aluminum is shown in Figure 6. As 
can be seen by comparison with Figure 7, the yield closely follows the stopping power. 

Figure 6. Secondary Electron Emission by Aluminum for Proton Impact at Normal Incidence; 
Experimental Points as Indicated in the References.19, 20, 21, 22
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Figure 7. Stopping Power for Protons on Aluminum. (From NIST PSTAR Database.†) 

2.2.3 Backscatter 

Backscattered electrons are those emitted from the surface with energies above 50 eV. Their 
energy distribution is usually peaked close to the primary incident energy and they may be 
considered as reflected electrons. 

Nascap-2k uses a backscattering theory23 based on that of Everhart24 as extended by McAfee25. 
It assumes a single scattering in accordance with the Rutherford cross-section and the Thomson-
Widdington slowing down law,  

(29) 

(valid for most metals for E > 10 keV). For normal incidence the backscattering coefficient is 
given by 

(30) 

where a is taken to be 0.0375 Z and where Z is the atomic number of the material. This 
expression matches the experimental data. 

The large-angle scattering theory, together with Monte Carlo data and experiments by Darlington 
and Cosslett,26 indicate that the angular dependence of backscattering is well-described by 

( ) ( )( )o 1exp 1 cosη ψ = η η − ψ (31) 

† National Institute of Standards and Technology Proton STopping power And Range database available at 
http://www.nist.gov/pml/data/star/index.cfm 
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where the value of η1 is, within the uncertainty in the data, what would be obtained by assuming 
total backscattering at glancing incidence, η1 = –log ηo. The net albedo for an isotropic flux is 
then 

  (32) 

As the energy is decreased below 10 keV, the backscattering increases. Data cited by Shimizu27 
indicate an increase of about 0.1, almost independent of Z. This component of backscattering can 
be approximated by 

  (33) 

At very low energies, the backscattering coefficient becomes very small and, below 50 eV, 
becomes zero by definition, as all emitted electrons are considered secondaries. This can be 
taken into account by a factor of 

 
( ) 1 EH E 50eV log

log 20 50eV
   −      

 (34) 

where Η is the Heaviside step function. The formula for energy-dependent backscattering, 
incorporating these assumptions, is then  

 
( ) ( ) ( )

0.037ZE 5
o

1 E e 2H 1 E H E 0.05 log H E 1 1
log 20 0.05 10 e

−        η = − − + − × + −              
 (35) 

where energies are measured in keV. 

2.2.4 Photoemission 

Photoelectrons are those ejected from the surface due to the solar ultraviolet radiation. Usually 
the quantity known is the yield, or number of electrons emitted for a surface normally exposed to 
the solar spectrum, at an “earth distance” from the sun (Ysun). The photocurrent from a surface 
exposed to the sun at an angle ψsun is given by the formula 

 ( ) sunsunphoto cosYexposed Areai ψ=  (36) 

This assumes that the yield per photon is, on average, independent of ψsun.  

A surface element is taken to be sunlit if its centroid is sunlit, i.e., if a vector from the centroid in 
the sun direction does not intersect any other surface element. 

( )
( )
o o

o 2
o

1 1 log
A 2

log
−η − η

=
η

[ ]o 0.1exp E 5 keVδη = −
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2.3 Surface Charging from Tracked Currents and/or Current Balance 

In short Debye length environments, such as encountered in low-Earth orbit, the orbit-limited 
approximation greatly overestimates currents of attracted particles. This occurs because 
potentials that decay faster than inverse square (sheath potentials) lead to an effective potential 
barrier to attracted charged particles when angular momentum is taken into account. Nascap-2k 
can compute the charging of spacecraft surfaces using tracked currents, either by themselves or 
in conjunction with analytically computed currents. Calculations of typical interest include: 

1. Floating potential and/or differential charging of a negative spacecraft, whose ion current
may be enhanced and asymmetrized due to ram/wake effects.

2. Floating potential of a biased spacecraft that has both ion and electron sheaths. The
electron current may be additionally limited by magnetic field effects.

3. Dynamic potential of a spacecraft with time-dependent bias.

In “Surface Charging” calculations with “Tracked Ion and Analytic Electron Currents” 
(“Auroral” environment only), the analytic electrons used are high energy electrons computed 
from the Fontheim formula. In “Time Dependent Plasma” calculations, the analytic electrons 
used are computed by the convected Maxwellian formula. 

2.4 Potentials in Space 

Nascap-2k uses a finite element method to solve Poisson’s equation ( )xρ=φ∇ε− 2
o  for 

electrostatic potentials throughout space. Nascap-2k uses the variational form 

( ) ∫








•φ∇φ+
⌡

⌠








ε
ρφ

+φ∇
δφ
δ

= dS
2
1dV0

o

2 (37) 

The first term in the volume integrand corresponds to the Laplacian operator; the second term is 
the space charge contribution. As surface potentials are held fixed when solving for potentials in 
space, the surface term appearing in Equation (37) is not used in the potential solution, but may 
be used later to determine the normal component of electric field (and thus the surface charge) 
for each surface element. 

The solution is subject to fixed potential boundary condition on the spacecraft surfaces and either 
zero potential or monopole potentials on the grid boundary. 

Available Space Charge-Density Models 

A number of models of the charge density are available to study different phenomena. 

In the following, the symbol λD  is the plasma Debye length and g is the plasma density reduction 
factor computed by geometric wake model (0<g<1). 

Laplace. The Laplacian space charge option specifies that the charge density is zero and is 
appropriate for very low density plasmas. 
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 o

0ρ
=

ε
 (38) 

i.e., charge exists only on object surfaces and external boundaries, as determined by the 
boundary conditions. “Space charge” iterations may still be required, however, due to the 
treatment of surface electric fields. 

Linear (Debye Shielding). The Linear space charge option solves the Helmholtz or Debye-
Huckel equation. This model is rarely applicable to spacecraft because it assumes all potentials 
are much less than the plasma temperature, which is only true in low density plasma where the 
laplace approximation is valid. 

 g2
Do

2

λ

φ
−=

ε
ρ

=φ∇−  (39) 

Nonlinear. The Nonlinear space charge model is appropriate for most low-Earth-orbit type 
plasmas. It accounts for space charge acceleration and convergence in a manner based on 
spherical collection (Langmuir-Blodgett28 problem). Poisson’s equation is solved with space 
charge given by: 

 

( )( )














θφπ+

φ

λ
φ

−=
ε
ρ

=φ∇− 232
Do

2

41

,C,1max
g

E
 (40)

 

This model smoothly interpolates between Debye screening at low potential and an accelerated 
distribution with particle convergence at high potentials. The convergence factor is computed in 
terms of local information and problem parameters. The convergence model was developed by 
numerically solving the Langmuir-Blodgett problem for collection by a high-voltage sphere and 
fitting the result to an analytic form. An excellent fit was found with  

 ( ) ( ) 509.0262.12 29.2 −= φθθλDsh rR E  (41) 

 ( ) ( )( )232
sh 545.3,rRmin,C θφ=φ E  (42) 

where E is the local electric field.
 

Frozen Ion. The Frozen Ion formulation is intended for short timescale (typically sub-
microsecond) problems for which it is a good approximation to assume that ions remain 
stationary and at ambient density (“ion matrix” approximation), but electrons achieve barometric 
equilibrium. This approximation is intended primarily for negative potentials, for which the 
charge density is zero at zero potential and for which at negative potential (electrons repelled) the 
charge density becomes positive and asymptotically reaches the ion density. For computational 
convenience we extend the charge density linearly to positive potentials, as an exponential 
increase in electron charge would be unphysical. 
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( )
0gne

0e1gne /

>φ
θ
φ

−=ρ

≤φ−=ρ θφ

(43) 

Considerations for implementing this formulation stably on a coarse mesh are discussed in 
Section 3.6.5. 

Barometric. The barometric space charge model is for cases in which all the surfaces are at 
potentials comparable to or below the plasma temperature and there is a region of low density, 
such as a plasma wake. The total charge density is the sum of the ion and electron charge 
densities. 

ie ρ+ρ=ρ (44) 

The ion density is the plasma density decreased by the wake factor. 

engi =ρ  (45) 

The electron density is expanded about barometric equilibrium: 

( )
( )( )




φ≤φθφ−φ
φ>φθφ−φ+

ρ−=ρ
bb

bb
ie exp

1
(46) 

( )glnb θ=φ  (47) 

In a dense, short Debye length plasma, the requirement that the ion and electron densities be 
nearly equal gives strictly barometric potentials. In plasmas with a longer Debye length strict 
quasineutrality does not hold, so that, for example, the potential in a wake is considerably less 
negative than barometric, and the wake is therefore electron rich. 

Note that this model differs from the “Nonlinear” model in that it lacks an approximation to 
attracted species density in sheaths and does not allow for ion depletion in positive potential 
regions. 

Full Trajectory Ions. Ion densities are calculated from steady-state ion trajectories. Electrons 
are barometric. This approximation is used to model charge density for a moving spacecraft 
when current collection in the wake is important and the neutral wake approximation is 
inadequate—such as when high potential surfaces are in the wake.  

( )( )( )







 ρ

θ=φ

θφ−φ−
ε
ρ

=
ε
ρ

en
ln

exp1

i
b

b
o

i

o (48) 

Here, ρi is calculated by tracking ions. 
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Plume Ion Density. Ion densities are initially computed from an imported plume map file. 
Electrons are barometric. The quantity oρ ε  is computed using the same formula as for full 
trajectory ions, where ρi is computed by summing the contributions from the thruster plumes 
instead of computed by tracking macroparticles. After the initial iteration, ρi is computed by 
summing the main beam contribution from the thruster plumes and the charge exchange 
contribution from generating and tracking charge exchange ions.  

Hybrid PIC. This algorithm is used for timescales (typically sub-millisecond) on which it is 
practical to treat ion motion, but electrons may be considered in barometric equilibrium. The 
total charge density is the sum of the ion and electron charge densities.  

 ie ρ+ρ=ρ  (49) 

The ion density is computed from ion macroparticles that move in the local electric fields at each 
timestep. The electron charge density is given by the same formula as for the Barometric model 
above with the barometric potential given by 

 







 ρ

θ=φ
en

ln i
b  (50) 

Full PIC. For this option, it is assumed that both the electron and ion-charge densities were 
stored during particle tracking. 

 
trackedρ=ρ  (51) 

2.5 Macroparticle Creation and Tracking 

Particle tracking is used to study sheath currents, to study detector response, to generate steady-
state charge densities, and to generate space charge evolution for dynamic calculations. The 
investigation of detector response is applicable in both tenuous and dense plasmas. However, the 
other phenomena are only applicable in plasmas with Debye lengths no more than the spacecraft 
size.  

In a dense plasma with high potentials, the disturbed region is referred to as a sheath. The 
“sheath surface” represents a sharp demarcation between a low potential exterior region 
containing neutral “undisturbed plasma,” and a high potential interior region from which one 
species (ions for positive potentials; electrons for negative potentials) is excluded. 

In a dense plasma, the total current and its distribution over the spacecraft surface depend on the 
plasma environment, the surface potentials, the sheath structure, the spacecraft velocity, and 
ambient and spacecraft generated magnetic fields. For a large object (many Debye lengths in 
size) at low potential (at most, a few times the plasma temperature), Debye screening minimizes 
the extent of the object’s influence on the plasma. Because the sheath is “thin,” the sheath surface 
lies near the spacecraft surface. The current attracted to each surface element is then given by its 
area times the plasma thermal current of the appropriate species. For an object (not necessarily 
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large) at high potential, however, the extent of perturbed plasma is far greater. A first estimate of 
the sheath thickness is given by the Child-Langmuir29,30 distance.  

θ
πε

=
en9

8D o
CL (52) 

The plasma thermal current then flows through an area much larger than the spacecraft surface. 
The current may be focused by the fields within the sheath, which affects the distribution of 
current over the spacecraft surface. This focusing causes the increase in space charge density due 
to particle acceleration modeled in the “Nonlinear” space charge density model.  

Macroparticles are generated in the Particle Generation step of the script and tracked in the 
Track step of the script. Macroparticles can be generated at a well-defined sheath surface, at the 
boundary of the computational space, throughout the volume of space, at surface elements, or at 
user specified locations. As macroparticles are tracked, their charge density in the volume 
elements they pass through may or may not be retained, depending on user choices. The current 
to any surface element hit by the macroparticles is retained. 

2.5.1 Generation of Macroparticles at Sheath Surface 

The attracted species diffuses across the sheath surface at a rate given by the plasma thermal 
current.  

m2
eenjth π
θ

= (53)

The current density to the sheath edge is computed by assuming the sheath to be a perfectly 
absorbing spherical surface.  

The charged particles constituting this current undergo motion consistent with the electric and 
magnetic fields inside the sheath. The sheath surface is taken as the equipotential surface at 
φ = ±θln2. This choice is made because the attracted species is absorbed by the sheath, so we 
have only the inward moving component, comprising half the ambient density. The repelled 
species, whose density satisfies ( )θφ−= expnn a , must also be at half the ambient density,
leading immediately to the sheath potential. 

Macroparticles representing this sheath current can be generated and tracked to determine the 
current to the spacecraft and its distribution. The initial velocity is the average velocity of a 
charged particle crossing the sheath boundary. In the absence of spacecraft motion or a magnetic 

field, this is 
m
e2v

π
θ

=  in the direction of the local electric field. More precisely, for a sheath 

segment on the ram side 
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where the plus sign is for ions and the minus for electrons and vx is the component of the 
spacecraft velocity along the local electric field. In the absence of spacecraft motion and for a 
sheath segment in the wake,  

 
















 φ+λ

π
θ

±=
E
EEv D,min

m
e2  (55) 

With a uniform magnetic field 
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where the drift velocity term 
2drift B
BEv ×

=  is not included if it would make the argument of the 

square root negative. 

This model is appropriate for high potentials. When either the thermal distribution of particle 
velocities or the spacecraft velocity is important, macroparticles should be tracked from the 
boundary of the computational space. 

2.5.2 Generation of a Thermal Distribution at the Computational Space Boundary 

There are two models for creation of macroparticles at the boundary of the computational grid. In 
both models, the plasma is assumed to be Maxwellian. The two models are inconsistent and 
should not be used together.  

Boundary Injection 

In the simplest model, macroparticles are created with charge equal to the plasma thermal current 

times the area times the time interval, q = jthA∆t, and velocity equal to 
m
e2

π
θ

 normal to the 

boundary, so that they represent a density of n/2. These can each be split into eight outwardly 
moving macroparticles, to approximate a thermal distribution. The split macroparticles have an 

additional velocity of ±0.707 
m
eθ

 along each axis of a randomly generated coordinate system. 

The splitting is done in the plasma frame of reference in order to simulate the correct momentum 
and energy distribution for a drifting Maxwellian when transformed back to the spacecraft 
reference frame.  
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Boundary 

In this model, macroparticles that represent a specified fraction of the thermal distribution in 
each of the three spatial directions are created. At each boundary emission point, several 
macroparticles are created that sample the velocity distribution function in each of the three 
spatial directions. The user specifies which fraction of the distribution function each 
macroparticle is to represent and the code computes the range of velocities ( )z,y,x

2,1v  which would 
give the specified fractions, ηi. 
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Several macroparticles are created, each with velocity the sum of the average velocity of its 
fraction of the distribution and the ram velocity (negative of the spacecraft velocity).
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2.5.3 Generation of Macroparticles Throughout the Computational Space 

Initialization 

Macroparticles can be created throughout the computational space to represent a uniform 
distribution of charge. The weight of these macroparticles is decreased by any geometric wake 
factor. Each macroparticle can be split into eight outwardly moving macroparticles so as to 
approximate a thermal distribution. The velocities have components of ±0.707 meθ  along 
each axis in a randomly oriented coordinate system. The splitting is done in the plasma frame of 
reference in order to simulate the correct momentum and energy distribution of a drifting 
Maxwellian when transformed back to the spacecraft reference frame. 

Charge Exchange 

Macroparticles can also be created throughout the computational space to represent charge 
exchange current. Charge exchange ions are those created by a charge transfer collision between 
a fast ion and a slow neutral atom, such as occurs in ion thruster plumes. The current per unit 
volume associated with each macroparticle is the product of the charge exchange cross section, 
the neutral density, and the main beam ion current density. 

jcex=e σcex nneutral nbeam vbeam. (59) 

Each component of the initial velocity is given by 
m
3448.0e2

ζ , where 0.3448 is 4000 K in 

electron volts and ζ is a random number between -1 and 1. 
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The neutral density is the sum of the un-ionized propellant from the thrusters, the gas flowing 
through the neutralizers, and the background gas.  

 
neutral
a

gas
rsneutralize

unionized
thrustersneutral nnnn ++=  (60) 

The contribution from each thruster is given by the solid angle subtended by the thruster grid, the 
flow rate and the temperature.  

 thruster

thrusterneutral
thruster

gridunionized
thrusters e8

mFlown
θ

π
π

Ω
=  (61) 

The contribution from each neutralizer is given by the flow rate, the temperature, the angle 
between the neutralizer axis and the line of sight from the neutralizer, and the distance from the 
neutralizer. 
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e8
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π
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θ
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=  (62) 

Charge Exchange Cross Section 

By default, Nascap-2k uses the following energy dependent charge exchange cross section 
appropriate to Xenon.31 A constant cross section can also be specified.  

The cross sections are functions of the kinetic energy (E, in eV) of the energetic ion in the 
laboratory frame. 

For the reaction Xe+ + Xe → Xe + Xe+ ,  

 σ (E) = (90.9 – 15.4 log10(E)) × 10-20 m2,  (63) 

which is valid from 1 to 600 eV.  

For the reaction Xe++ + Xe → Xe + Xe++ , 

 σ(E) = (45.7 – 8.9 log10(E)) × 10-20 m2,  (64) 

which is valid from 2 to 1000 eV. In this energy range the cross-section for Xe++ + Xe → Xe+ + 
Xe+ is at least a factor of ten lower and is crudely represented as  

 σ(E) = 0  E < 20 eV (65) 

 σ(E) = 1.5 × 10-20 m2   20 eV < E < 100 eV 

 σ(E) = (1.5 + 1.5(E-100)/500) × 10-20 m2  E > 100 eV 
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In the Nascap-2k implementation a threshold energy for charge exchange is assigned. This is 
done mainly for computational efficiency, and with the rationale that charge exchange by a slow 
ion merely produces another slow ion. 

2.5.4 Generation of Macroparticles at Surface Elements 

Macroparticles can be created on surface elements to determine if emitted current will return to a 
surface of the object or leave the computational space, or to determine the current incident to a 
detector from a convected Maxwellian plasma. 

Emitted Current 

Macroparticles that represent a user specified emitted current and range of angles and kinetic 
energies are created on surface elements. The macroparticles are emitted with a flat distribution 
in velocity, azimuthal angle, and cosine of the polar angle. A full distribution of macroparticles is 
created at a user specified number of points on each emitter surface element. The emitted current 
is subtracted from the total current to the emitting surface element. 

Current to Detectors (Reverse Trajectory Tracking) 

Another reason to create macroparticles on surface elements is to compute the current to those 
surface elements from a flowing thermal plasma. This technique is applicable when the current 
of interest is composed of charged particles with velocity (direction, magnitude, or both) far from 
the mean of the distribution function, the sheath is very large, or there is some other condition 
such that tracking particles inward from a sheath boundary does not work well. Under these 
conditions, reverse tracking can be used to determine the original velocity of the incident 
particles, or if they are blocked. The current is then given by an integral over the environment 
distribution function of the incident species.32 

Macroparticles that represent a user specified field of view are created at a user specified number 
of points on each detector surface element. The user-specified number of macroparticles are 
distributed evenly in velocity, azimuthal angle, and cosine of the polar angle. Each macroparticle 
has a weight appropriate to its fraction of the total incident current.  

When these macroparticles exit the computational space, the plasma properties and each 
macroparticle’s weight and final velocity are used to assign an incident current to the originating 
surface element. 

2.5.5 Particle Tracking 

Macroparticles are tracked until they leave the computational grid, hit a surface, exceed the 
number of allowed steps, or exceed the computational tracking time. They are tracked in the 
local electric field and the magnetic field (ambient uniform and spacecraft-generated dipoles) 
using a third order energy conserving algorithm. 

As the macroparticles pass through volume elements, their charge and/or current can be 
optionally saved to volume elements and nodes. This charge and/or current can subsequently be 
used in the space charge formulas to compute potentials in space.  
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2.6 Geometric Wake 

The exclusion of plasma in the wake of a rapidly moving spacecraft is also important. That 
portion of the sheath surface that lies in the wake region has a reduced current passing through it. 
The volume of space in the wake has a reduced charge density. Conversely, on the ram side of 
the spacecraft, there is enhanced current and charge density. 

A spacecraft creates a wake when its velocity is comparable to, or larger than, the thermal 
velocity of the ambient ions. In low Earth orbit, the spacecraft velocity is 7500 m/s. The thermal 
velocity of a 0.3 eV oxygen ion is only about 2000 m/s. Thus the spacecraft travels a few of its 
own radii before ions can fill in behind it. The electrons fill in more rapidly. However, the 
density to which electrons can accumulate is limited by the space charge of the electrons already 
in the wake. Thus, except in regions where the density is extremely low, the electron density is 
only very slightly greater than the ion density.  

For each point in space, the wake module calculates what fraction of the thermal distribution of 
velocities, (in the spacecraft frame, a Maxwellian displaced by the spacecraft velocity vector) is 
not blocked by the spacecraft.  

The neutral wake density is given by 

( ) ( ) ( )
⌡

⌠
Ω








⌡
⌠ ΩΩ= ddvvvfxgxn ioi

2,, (66) 

where fio(v,Ω) is the unperturbed distribution function for a drifting Maxwellian, and g(x,Ω) has 
value “0” if a ray starting from x and going in the direction Ω would strike the spacecraft and “1” 
if it would not.  

2.7 Plumes 

The ion density and velocity due to an ion thruster main beam can be read into Nascap-2k and 
displayed. Multiple thrusters (each with its own location and axis direction) can be specified, 
although at present all thrusters have the same type of plume. Neutralizers can be specified as 
well. The plume currents are used in the computation of the potentials in space (“Plume Ion 
Density” space charge model) and charge exchange currents. 

2.8 Transverse Surface Currents 

The transverse surface current algorithm in Nascap-2k is used to calculate the current flowing 
along an antenna element or other object surface in response to time-varying applied potentials 
and/or active or passive current sources. The model accounts correctly for both local capacitance 
and incident plasma current. The change in charge on a surface element during a timestep is that 
which is needed to accomplish the change in surface electric field, which is obtained from the 
Nascap-2k potential calculation. The current to each surface element consists of the transverse 
surface current from neighboring surface elements and the current provided by the plasma, which 
is provided by the Nascap-2k PIC simulation. The current continuity equation is solved using a 
pseudopotential approach. As a boundary condition, one surface element of each conductive 
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element (i.e., surfaces associated with a given Nascap-2k conductor) is specified as connected to 
the biasing power supply, and the solution provides the required current. 

The basic equation to be solved is 0
t

=
∂
ρ∂

+⋅∇ J , where J is the surface current density, and ρ is 

the surface charge density. Note that the solution for the current is non-unique to the addition of 
any divergence-free current field. We assume that, provided appropriate boundary conditions are 
implemented, such circulating currents are not of concern to the problem being solved. 

2.9 Propagating Fields 

The transverse surface currents, the volume ion currents computed during particle tracking, and 
the volume electron currents computed from tracking or saved in the database by an external 
code, are a source of propagating electromagnetic fields. Nascap-2k can compute the magnetic 
field, the vector potential, the transverse electric field (rate of change of the vector potential), and 
the Poynting vector from these currents.  
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( ) ( ) ( )rBrArP ×ε=
dt

dc2
o (69) 

where the surface integrals are over the spacecraft surfaces and the volume integrals are over all 
space outside the spacecraft.  

3 NUMERIC MODELS 

This section describes the numeric techniques Nascap-2k uses to implement the physics models 
described in the previous section.  

• The orbit limited currents are computed by integrating over the distribution function. An
implicitized version of the Boundary Element Method is used to compute the evolution of
surface potentials.

• The finite element approach is used to solve Poisson’s equation for the spatial potential.
Implicitization and charge stabilization are used for stability. The finite element grid uses
strictly continuous electric field interpolants for accurate particle tracking.

• Macroparticle tracking is used for computing surface and volume currents and volume
densities. Macroparticle splitting is used for improved accuracy.
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3.1 Environment Integrals 

In section 2.1 we noted that the analytic current density to a surface at potential φ is given by 
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where L is 0 for the repelled species and |φ| for the attracted species, the “+” sign is for ions and 
the “-” sign is for electrons, f(E) is the distribution function at infinity, and F(E) is the flux at 
infinity.  

Below we describe how these integrals are done. 

The environment parameters used are those valid at the beginning of the timestep. 

3.1.1 Maxwellian Currents 

The Maxwellian integrals are simple. 
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which for the repelled species simplifies to 
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and for the attracted species simplifies to 
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The average yield requires a numeric integral. 
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For the attracted species use the substitution 
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For the repelled species use the substitution 







θ
−=

Eexpu  

( )( )

( )

( )( )

θ

⌡
⌠ θ−θ−

=

⌡
⌠ θ−








θ
φ

θ−

⌡
⌠ θ−θ−








θ
φ

θ−

1

0
0

1

0

1

duulnulnY

duulnexp

duulnulnYexp





(76) 

The numerator is calculated numerically using 200 points and Simpson’s integration. 

3.1.2 Fontheim Currents 

The Fontheim distribution includes both a Gaussian and a power law term. This distribution is 
only applicable for electrons.  

Gaussian Term 

The Gaussian integrals are slightly more complex than the Maxwellian. 
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Use the substitution 
gauss

oEE
u

∆
−φ−

=
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where L is now 
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The substitution ( )2uexpx −=  can be used to solve the remaining integral.
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The average yield requires a numeric integral. Using the same substitution and definition of L we 
have 

( )( ) ( )

( ) ( ) ( )Lerfc
2

ELexp
2
1

duuexpEuEuY

Y

gausso
22

gauss

L

gauss
2

ogaussogauss

π
∆+φ+−∆

⌡
⌠ ∆−+φ+∆+φ+∆

=

∞

(80) 

The integral in the numerator can be divided into three in order to isolate the peak at u = 0. If 
L > 0, then the first two terms are zero and ξ = L. 
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The first and third terms can be evaluated using the substitution ( )2uexpx −= . Then
xlnu −±= , where the “-” sign is used in the first term and the “+” sign in the third. Under the 

assumption that ξ is small, symmetry can be used to write the second term in terms of the error 
function. The numerator can be written as 
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Power Law 
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Using the substitutions x = E-φ and then z =x-(α-1) and z =x-α we get 
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The same technique is used to evaluate the average yield. 

 

( )

( )
( ) ( )

( ) ( )

( )

( )

j

dzzY

q
1

dzzY

q

Y

UU

L

1
UU

1
L

E,Emax

E,max

1E,Emax

E,max

1
1





⌡

⌠

α−














φ−

πζφ+




⌡

⌠

−α−














φ−

πζ

=

α−

α−

−α−

−α−

φ−

φ−









α−
φ−

φ−









−α−

 (85) 

3.1.3 Kappa Distribution Currents 

 

( ) ( )
( )

⌡

⌠








κθ
φ±

+
κθ−κΓ

+κΓ
πκθ

=
⌡

⌠
φ±








φ±

=

∞
−κ−

∞

L

1

2
1

L

dEE1E1
m2

eqndEEF
E

Eqj  (86) 

which for the repelled species simplifies to 

Approved for public release; distribution is unlimited.
31



( )
( )( ) ( )∫

( )
( )

κ−

∞
−κ−κ









κθ
φ

±
−κΓ
−κΓ

π
θκ

=

κθ+φ±κθ
−κΓ
+κΓ

πκθ
=

1

2
1

0

1

2
1

11
m2

eqnj

dEEE1
m2

eqnj

(87) 

for κ > 1. 

For the attracted species the integral requires a substitution. 
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The average yield requires a numeric integral. 
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Use the substitution 
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where 
κθ
φ

±=′ 1L for the repelled species and 1L =′  for the attracted species. 

Then use the substitutions y = uκ-1 and y= uκ for an even distribution of points. 
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where 
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2 1L for the repelled species and L1 = L2 = 1 for 

the attracted species. 

3.1.4 Convected Maxwellian Currents 

As the convected Maxwellian distribution depends on the velocity of the plasma with respect to 
the spacecraft and the angle between the bulk plasma velocity and the particle velocity, the full 
angular integral is needed.  
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The coordinate system is shown in Figure 8. 

Figure 8. Coordinate System Used for Convected Maxwellian Environment, in Spacecraft Frame. 

Written as an integral over the velocity at infinity, v∞, we have 
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where the lower velocity limit L=0 for an attractive potential and 
sm

e2L φ
= otherwise. χ is the 

angle between the flow vector U and the incident velocity at infinity v∞. χ is dynamically 
mapped to the incident angle ϑ and is given by 

ϕϑϑ+ϑϑ=χ ∞∞ cossinsincoscoscos uu . (94) 
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where ϑu is the polar angle of the flow velocity vector and ϑ∞ is the polar angle of v∞. With this 
substitution, the azimuthal integrand has the form‡ exp(-a cos(ϕ)), and noting that the zeroth-
order modified Bessel function of the first kind I0 is given by 

∫
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ϕ−ϕ=π
2

0
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0 ed)a(I2 , (95) 

we can write the current as 
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The velocity and polar angle integrals are performed numerically. The angle and magnitude of 
the flow velocity vector (defined in the spacecraft frame) are specified by the user, and the angle 
at infinity θ∞ is obtained from orbit relations in a 1/r potential, as a function of the total energy 

e2
mvE

2
∞=  and launch angle ϑ L. From reference 33 we obtain§  
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Measuring orbital angles from the polar axis that is normal to the sphere at the launch point and 
setting a = r determines the angle ϑo 
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Setting r = ∞ ( ϑ = ϑ ∞) gives 

ϑ
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φ
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2
20 sin)E(E411)cos( 

(99) 

‡ The evenness of the (even-order) Bessel function swallows a minus sign here. 

§ Starting from Goldstein Equation 3-46, substitute angular momentum l = r x p = r m v sin( ϑ ), potential energy Φ
= k/r, and 1/2mv2 = E + Φ, then for a launch radius r = a). 
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In the limit as U→0 we recover the expected isotropic/uniform flux density, while as the Mach 
number increases the flux approaches a cosine dependence on relative particle angle.34  

For full consistency with the above formulations of incident ion and electron currents, the 
secondary electron emission current due to ion or electron impact and the backscattered current 
due to electron impact would be given by 
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As this is a time consuming calculation and electron Mach numbers are always under 1, we 
compute the yields due to incident electrons using an isotropic Maxwellian distribution.  

incident
e

backsec,

emaxwellian
backsec,

e jYj = (101) 

The secondary emission due to ions is computed using the full angular integral. 

The effective density of each component is the expectation value of the distribution function. The 
techniques used to compute the average values of the square root of the inverse of the energy are 
the same as used to evaluate the current integrals above. 

3.1.5 Measured Currents 

If F(E)dE is the measured flux of ions or electrons striking a zero potential surface with energy 
between E and E+dE, after correction for the actual surface potential of the detector, then  
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where the substitution u=E±φ  was made. 

If the measurement is expressed as a set of energy bins in ascending order with flux 
( )i1ii uuF −+  in bin i which extends from iu  to 1iu + , the integral is discretized as
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where uj+1 is the lower boundary of the first bin entirely within the domain of integration, 
1jj uu +<φ±< . 
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The average yield is then given by 
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3.2 Barriers 

3.2.1 Space charge limiting of electron collection 

The optional barrier to electron collection is estimated to be the surface normal electric field 
times the minimum of the radius of curvature, the Debye length, and the square root of the 
surface area. The barrier, Ex, must be non-negative and is limited to no larger than the difference 
between the surface potential and the minimum potential on any surface or volume node.  

Maxwellian and convected Maxwellian terms are reduced by the factor 









θ
− xEexp  for φ < 0 and 
















θ
−φ xEexp,1min  for φ > 0 (106) 

The current given by a Kappa distribution term is modified by replacing φ by φ-Ex in Equation 
(90) for negative surface potentials and by multiplying the right hand side of Equation (91) for
positive surface potentials by the factor





























κθ
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−
−κ 1

xE1

1,1min (107) 

For a measured distribution, the potential is shifted by Ex before comparing with the limits of 
each bin. The high energy Gaussian and power law terms of the Fontheim distribution are 
unchanged. 
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3.2.2 Space charge limiting of photoemission 

For a barrier height of E1, the escaping photocurrent for a surface exposed to the sun at an angle 
ψsun is given by the formula ( ) ( ) ( )( )0,cosmaxEYIEj sun1sunsun1

escape
photo ψ= , where ( )1sunsun EYI

is the yield of photoelectrons with energy greater than E1 from the surface exposed to a normally 
incident solar spectrum. In the absence of electrostatic saddle-point or space charge barrier 
formation, the barrier to escape of photoelectrons is the surface potential for positive potentials 
and zero for negative potentials. Photoelectron space charge provides an additional possibility for 
increasing the barrier in excess of the surface potential or imposing a barrier in front of a 
negative potential surface. If the user requests that space charge limiting of the photocurrent be 
included in the charging calculation, the following algorithm is used to determine the barrier 
height, E1.  

First, if the ratio of the available photocurrent to the plasma density is less than 2% of the typical 

value for this ratio at Earth orbit, 
( )

02.0
n
107

1078
0j

a

6

6

escape
photo <

×
× −  there is no barrier. 

Otherwise, a “maximum barrier,” Bmax, is computed. Bmax is the lesser of the barrier calculated in 
two different ways. The first estimate, ( )1

maxB , is given by the condition that the barrier occurs no
further from the surface than the distance at which the current drops by a factor of two, i.e., 

2
c

2
barrier R2R ≤ , where the symbols represent the distance of the barrier from the local center of

curvature and the effective radius of curvature of the surface. The second estimate, ( )2
maxB , is

given by the condition that the photoelectron density beyond the barrier must be no less than half 
the ambient plasma density. If either condition gives a negative value, the barrier is zero. 

( )1
maxB  is found using an analytic fit to numeric calculations that assume only that the shape of the

photoemission spectrum is the default shape specified in Section 2.1.4. Without loss of 
generality, the minimum potential is taken to be zero, therefore the surface potential is E1. In a 
locally spherical geometry, the space charge between the surface and the barrier is given by 
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where the Heaviside step function has been used to reflect the fact that electrons with energy less 
than E1 both leave and return, while those with energy greater than E1 only leave. The surface 
potential can be found by integrating Poisson’s equation inward from the barrier to the surface. 
For any combination of escaping photo current and effective radius of curvature there is a unique 
value of escaping energy E1 for which the surface potential is also E1. The fit to these self-
consistent barrier calculations used in Nascap-2k is 

( ) ( )( ) cR1542.04291.0escape
photo

2
cc

1
max 0j)R6419.7R755.13772.24(B −

−+= (109) 
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( )2
maxB  is found using an analytic fit to the solution of equating the charge density of the escaping

photocurrent to half the ambient plasma density. Beyond the barrier in the ambient plasma, the 
charge density of the escaping photocurrent is 

( )( )
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Equating ρescaping to half the plasma density and rearranging gives 
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where the left hand side depends only on the shape of the photoemission spectrum and the 
surface potential, and the right hand side depends only on the problem parameters and incident 
angle. Again, when solving this equation, the shape of the photoemission spectrum is taken to be 
default shape specified in Section 2.1.4. The maximum barrier is given by zero surface potential. 
For zero surface potential, the solution is well-fit for barriers up to 12 volts by 
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ne
0j
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where the scaling is such that the left hand side is unity for typical 1 AU parameters. To simplify 
the solution of the cubic equation above, we obtain an initial guess by first solving the quadratic 
fit  
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and then solve the cubic using Newton iteration. 

Once the maximum barrier, ( ))2(
max

)1(
maxmax B,BminB = , has been determined, the actual barrier E1 

can be determined. If 0Bmaxs ≥≥φ , the space charge is not sufficient to cause a negative 
potential in front of the surface, so the barrier is equal to the surface potential. 

If the surface potential is less than the maximum barrier (Bmax > φs, including cases with 
negative surface potential) a final condition is used to determine the barrier. The escaping 
photocurrent must be sufficient to give photoelectron density comparable to the ambient density 
beyond the barrier in the ambient plasma. This condition is approximated as 

( )
e
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)E(e2enEj φ−
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If E1 = Bmax satisfies this inequality, the barrier equals the maximum barrier. If not, the equation 
is numerically solved for a lower barrier E1 that gives the equality.  

3.3 Shadowing 

A surface element is shadowed from the sun if, either 

(1) Its normal points anti-sunward, or 
(2) Its centroid lies behind the projection of another sun-facing surface. 

The determination of the second is handled in a coordinate system in which the z-axis is the 
direction to the sun. The unit vectors along the axes of the rotated coordinate system are given by 
sx, sy, sz. The position of a surface element along the z-axis in the rotated system is given by 

( )∑ •=
i

izz N
1r rs , where ri are the nodes of element and N is the number of nodes. The

projection of a surface element on the x-y plane of the rotated system is given by ( )iyix , rsrs •• . 

Surface A is shadowed by surface B if, rz(A) < rz(B) and the centroid of the projection of surface 
A is inside the projection of surface B.  

3.4 Implicit Charging Using the Boundary Element Method 

Among the difficulties of developing accurate and robust algorithms for spacecraft charging has 
been the inability to calculate electric fields accurately, let alone to predict how electric fields 
will change as a result of surface potential changes. Nascap-2k uses the Boundary Element 
Method (BEM)35 to calculate accurate electric fields and as the basis for implicit charging 
equations. 

3.4.1 Boundary Element Method Algorithm 

The Boundary Element Method is a means for relating fields and potentials in a region to sources 
on the boundary of the region. It is comparable to a sum over the coulomb field of all the charges 
in a region rather than an iterative field solution. In our case, the region is the space exterior to a 
spacecraft, and the boundary is the spacecraft surface. Also, we assume the “free space Green’s 
function”, i.e., the potentials in the region obey Laplace’s equation. 

The sources are sheets of charge coincident with the spacecraft model’s surface elements. We 
assume that each surface element, j, has a constant charge density, σj. The familiar relation for 
the potential of a point charge then generalizes to an integral over the object surface: 
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=φπε→
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o r
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where φi, which could be the potential at any point in space, is considered the potential at the 
center of a surface element. Similarly, the familiar relation for the electric field of a point charge 
generalizes to: 
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where Ei is the electric field at some point in space, the point again taken at the center of a 
surface element. 

We express the relations of potential and electric field to charge density as matrices: 

[ ] jij
1

i C σ=φ −             jiji)( σ=⋅ FnE (117) 

These can be combined to obtain a relation between normal electric field and voltage: 

( ) jkjiki VCFnE =⋅ (118) 

This last relation is the key to developing relations between surface charge, surface potential, and 
surface currents in order to derive charging equations. 

3.4.2 Doing the Integrals  

To get C-1 we need to do integrals of the form 
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There are tricks to doing these integrals, which can be found in the literature. Denote the field 
point, ri as P, and take the domain of integration as triangle ABC. Then, the vector from the field 
point to anywhere on the triangle can be parameterized as 

uvBCuABPAij ++=r  (120) 

where PA, AB, and BC are vectors between pairs of points, and u and v are parameters, each in 
the interval [0,1]. The square of the distance, rij, then becomes 
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where the coefficients Tkl are formed from pairwise scalar products of the three vectors above. 
Now, the integral can be expressed as 
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where the Vi coefficients are functions of v. 
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The inner integral (over u) may be found in standard integral tables36 
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We are left to do the outer integral (over v) numerically. To facilitate this, we select the vertex A 
such that the scalar product PA⋅BC is the minimum of the three choices. Then, very few 
integration points are needed in the outer integral (over v). (We use a 5-point Simpson’s rule in 
the present implementation.) 

The integrals for the electric field are similar, although there are more of them. The same 
techniques apply. 

3.4.3 Test for Accuracy 

We tested the algorithm for accuracy by calculating the electric fields on the surface elements of 
a uniform potential sphere. The sphere model in Figure 9 was originally defined using Patran, 
and has 90 surface elements and 92 nodes. It provides a fairly coarse mesh over the surface of 
the sphere. 

Figure 9. Sphere Defined Using Patran. 

The next figure shows the result of the BEM calculation. Note that the total variation of electric 
field over the surface is only three percent. Also, the apparent radius of the sphere (given by V/E) 
is within three percent of the nominal radius. 
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Figure 10. Normal Component of Electric Field at Surface of Sphere as Computed Using the BEM 
Approach. 

By contrast, the same calculation using Nascap-2k’s finite element algorithm with higher order 
elements gives an electric field variation of seven percent, and a value of electric field that is 
about fifteen percent high. A finite element algorithm with linear elements gives an eight percent 
variation, and a value that is about twenty-five percent high.  

3.4.4 Implicit Charging 

To develop charging equations we need to express physical charges on physical surfaces in terms 
of the voltages on the same objects. We can then proceed to calculate what voltage changes will 
be produced by changes in charge (currents). Because the interior of a spacecraft is not free 
space, the physical charge densities bear no relation to the charge density σ’s used in the 
derivation of the relation between the normal electric field and the voltage of Boundary Element 
Method. 

To get the physical charges we use Maxwell’s divergence equation in the form σ = ∇⋅D. Figure 
11 shows the “Gaussian pillboxes” used to calculate the actual surface charges on insulating 
surfaces and on conductors, as described below. 

Approved for public release; distribution is unlimited.
42



Figure 11. “Gaussian Pillboxes” Used to Calculate the Actual Surface Charges on Insulating 
Surfaces and on Conductors. 

For an insulating surface (upper pillbox in Figure 11), the external field is E⋅n, which we obtain 
from the BEM solution. The internal field is related to the capacitance between the insulating 
surface and its underlying conductor. Thus, the total charge, qi on such a surface is given by: 

( ) ( )ciiciii CAq φ−φ+⋅= nE (124) 

where A is the surface area. For a conductor, since charges are mobile, it is not useful to know 
the charge on each individual surface, but we need to work with the total charge on the 
conductor. Conducting surfaces include the obvious “bare” surfaces (lower pillbox in Figure 11), 
as well as the surfaces that underlie the insulating surfaces (middle pillbox in Figure 11). In both 
cases, we have zero electric field internal to the metal. To obtain the total charge on all the 
surfaces of the conductor, we need to sum the external-field charge terms for the bare conducting 
surfaces, plus the capacitive-charge terms for the insulator-metal interfaces:  

( ) ( )∑∑ φ−φ−⋅=
insulators

ciic
bare

iic CAQ nE
(125) 

We previously found the BEM expression for the external fields in terms of the cell potentials: 

( ) jkjiki CF φ=⋅nE (126) 

Substituting this into the equations for qi and Qc, performing the indicated sums, and adding the 
capacitive terms, we get the matrix equation: 

Q=GΦ (127) 

where the vectors are composed of contributions from all the insulating surfaces and a term for 
each conductor representing all the bare conducting surfaces of that conductor. Conductors that 
are biased with respect to another conductor are treated as a single conductor at this point in the 
calculation. 

Q = {q1, q2, … ,qn, Qc} (128) 

Φ = {φ1, φ2, …, φn, φc} (129) 

Metal
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where Q and Φ, the charges and potentials, are related by the charging matrix, G. 

We are looking for an equation that relates currents to voltage changes. So, we differentiate the 
charge equation in time: 

 ΦGQI  =≡  (130) 

Discretize to a finite time interval: 

 ( ) ( )[ ]tttt ΦΦGI −∆+=∆  (131) 

Implicitize by evaluating current at the final time (also, for simplicity, changing [t+∆t,t] to [t,0]): 

 ( ) ( ) ( )[ ]0ttt ΦΦGI −=  (132) 

Linearize currents with respect to voltage (since we do not know the final voltages at which the 
current is to be evaluated): 

 ( ) ( ) ( ) ( )[ ]0t0t Φ−Φ′+≈ III  (133) 

And, solve the equation: 

 [ ] ( ) [ ] ( ) ( )t00ttt IΦIGΦIG +′−=′−  (134) 

This gives us a straightforward matrix equation. Everything on the right-hand-side is known, and 
we can solve using standard linear algebra equation solver packages.  

Any user specified values for the bias of one conductor with respect to another is reapplied each 
timestep. The v × B contribution to the surface potential is also reapplied each timestep. 

Before proceeding to examples, it is worth commenting on the derivative of current, 
jiij I φ∂∂=′I . 

Consider three cases: 

1. For current sources such as incident plasma current, we usually approximate the current 
as a function of the local voltage only. This gives a diagonal term in ijI′ . Since such 
currents decay exponentially, some care must be taken not to underestimate the change in 
current if the voltage is changing in such a direction that a component of current is 
increasing (i.e., electron current for a surface whose potential is increasing (toward zero) 
from a large negative potential). 

For example, suppose we have φ−−=φ=φ e1)(I and φ(0)=-2. The implicit solution for 

φ(t) is 
)tI1(

t))0((I)tI1)(0()t(
′−

φ+′−φ
=φ . If we use the actual derivative ( )( )0expI φ−=′ , we 

obtain the upper curve in Figure 12, which works satisfactorily for sensible timesteps like 
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0.1 or 1, but overshoots the solution ( )( )0=∞φ  badly for long timesteps like 10 or 1000. 
However, if we recognize that zero is a value we wish not to overshoot and accordingly 

set 
)0(0

))0((I)0(II
φ−

φ−
=′ we obtain the lower curve in Figure 12, which gives equally good

results for short timesteps and does not overshoot the solution, even for a timestep of 
1000. 

Figure 12. Example Problem Solutions for Short and Long Timesteps for Two Choices of Current 
Derivative. 

2. Conductivity current, such as Ii = σ(φc-φi), contributes off-diagonal as well as diagonal

terms to the current derivative matrix. 
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contributes many more off-diagonal terms.
3. The case that is particularly problematic is Ii = Ii(E·n). This occurs for a photo-emitting

surface at negative potentials. The problem is that the local electric field is a function of
the potentials on all the surfaces. However, the BEM provides us with exactly that
function. We can now compute the term

jiiijiij EEIII φ∂∂×∂∂=φ∂∂≡′ (135) 

using the relation  

( ) jkjiki ΦCFnE =⋅ (136) 

derived from the BEM. 

In Nascap-2k we impose some additional conditions on the current derivative in order to promote 
stability, some of which are related to the sharp cutoffs that occur with secondary and 
photoemission currents. The problem is illustrated by Figure 13. If we charge negative from 
point A and use the actual derivative we fail to anticipate the sharp increase in secondary 
emission current and overshoot negative. If we charge positive from point B and use the actual 
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derivative we fail to anticipate the sharp drop in secondary emission current and overshoot 
positive. If we charge negative from point C, then the actual derivative predicts unphysically 
enhanced secondary emission current at negative potentials, with the result that negative 
charging becomes glacially slow. The rules summarized below are designed to promote 
reasonable behavior for charging of surfaces encountering suppressed emission current. 

 

Figure 13. Notional Curve of Effective Secondary Emission Current versus Surface Potential. 

1. If the secondary electrons are limited by positive potential or electric field barrier and the 
net current would be positive were they not limited, then the rate of increase of emission 
current with drop in potential is at least doubled, and for potential above 2 V the rate is 
adjusted such that emission is turned on fully should the potential drop to zero. This 
prevents (or, at least, minimizes) oscillations between high positive and high negative 
potential when the true current balance occurs at near zero potential. 

2. For the Fontheim distribution, if the electric field is positive and the surface has negative 
current before any limiting of low energy currents, then the derivative is set to ignore the 
increase in emission due to decreasing potential. This allows the surface potential to 
decrease at a reasonable rate. Otherwise the low energy currents would go from 
suppressed to unphysically enhanced and prevent the correct negative charging. 

3. If the electric field is negative and the surface has positive current before any limiting of 
low energy currents, then the derivative is set to turn off the emission when the potential 
reaches 2 V. Otherwise, the suppression of emission at positive potential would not be 
anticipated and the unsuppressed emission would drive the surface far above its true 
floating potential.  

4. If a surface is negative but has positive current and positive normal electric field, the 
derivative is set so that the current is turned off after rising to a potential of no more than 
+5 V. This prevents charging from negative to unphysical positive values when emission 
is already suppressed. 

5. The current derivative is set to allow a potential change of no more than 2 kV. 
6. The current derivative is set to allow a potential change of at least the minimum of 1 V 

and one-one hundredth of the electron temperature.  

A

B

C

-10 -5 0 5 10
Surface Potential
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3.4.5 Applicability at Finite Debye Length 

The effect of using the BEM capacitances to calculate charging dynamics is that the “to space” 
capacitance is underestimated, and thus the “overall” (to space) charging rate of the spacecraft is 
too fast. For short Debye length and low temperature the capacitance is inversely proportional to 
the Debye length, whereas the BEM (vacuum) capacitance is inversely proportional to the 
spacecraft size. For typical cases the charging rate may be too fast by a factor of ~100. Note that 
even the “correct” charging rate is fast compared with the differential charging rate. 

Two factors that mitigate the charging rate issue outlined above are; 

1. At high potentials the capacitance is inversely proportional to the sheath size rather than
to the Debye length, so that typical errors in charging rate are factors of ~2 to 10 rather
than ~100;

2. Typically, in Nascap-2k calculations the timestep is far too long to resolve the vacuum
charging rate, so that the charging rate in the simulation is determined by the choice of
timestep rather than the actual capacitance.

Note that the rate of differential charging is not affected by the plasma, as the capacitances 
governing differential changing depend on material thicknesses and electronic component values 
rather than on spacecraft size and plasma effects. Also, the quasi-steady-state and equilibrium 
potentials are not affected, because these depend on currents which in turn depend on potentials 
and electric fields. The electric fields used to calculate currents are calculated from the finite 
element potential solution, and therefore do include the effects of a finite Debye length plasma. 

3.4.6 Example: Sunlit Sphere 

To illustrate the implicit charging model, we calculate the charging of a sunlit Teflon sphere in a 
1 cm-3, 20 keV plasma. The NASCAP/GEO version of this was published in 1978.37 A version of 
the original result is shown below in Figure 14. The sun direction is (1,1,1) (from the upper 
right). The dark side of the sphere gradually charges negative due to incident plasma electrons, 
while photoemission grounds the sunlit side. Eventually, however, the strong negative potentials 
due to the dark surfaces wrap around the sphere and form a barrier to photoelectron escape. The 
potential of each sunlit surface is subsequently determined by the condition that its electric field 
has a small, positive value (seen in Figure 14 by the coarse contour spacing near the upper right 
spacecraft surface), so that just the right fraction of photoelectrons can escape over the barrier. 
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Figure 14. Potentials About Sunlit QSphere in Space as Computed By NASCAP/GEO. 

Figure 15 and Figure 16 show the BEM solution of the same problem for a PATRAN sphere and 
a QSphere respectively. The point on the sphere furthest from the sun is the least negative point. 

 

Figure 15. Potentials on Sunlit PATRAN Sphere in Space Viewed From Direction (1,2,3). 
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Figure 16. Potentials on Sunlit QSphere in Space Viewed From Direction (1,2,3). 

Figure 17 is another view of the BEM solution, showing more of the dark side. Despite the fairly 
coarse gridding on the sphere, the gradual potential gradient on the sunlit side and the constant, 
large negative potential on the dark side are clearly seen in the BEM solution. 

Figure 17. Potentials on Sunlit PATRAN Sphere in Space. 
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3.5 Finite Element Method to Compute Potentials in Space 

In calculating the potential in three dimensions around an arbitrary object, Nascap-2k employs a 
finite element approach using right parallelepiped elements and nonlinear edge interpolants. 
Arbitrarily nested subdivision (up to seven levels) is used to resolve important object features 
while including a large amount of space around the spacecraft for determining accurate particle 
orbits and keeping memory requirements reasonable. Figure 18 shows an example of a 
computational grid with progressively finer subdivision to give fine resolution near an 
experiment. 

 

Figure 18. Computational Grid With Subdivision.  

Nascap-2k solves Poisson’s equation  

 o
2 ερ=φ∇−  

by solving the associated variational principle 
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The first term in the volume integrand corresponds to the Laplacian operator; the second term is 
the space charge contribution. The surface contribution, given by the last term, is used to obtain 
the surface electric field. 

Poisson’s equation is solved with surface potentials fixed. To determine surface field values for 
fixed potential elements, we use the fact that the surface element electric field is conjugate to its 
potential, i.e., when the full conjugate gradient matrix multiplication is performed, the surface 
element electric field (corresponding to the existing potentials and fields) is the residual 
corresponding to the surface element potential. This is an improvement over capacitance matrix 
methods in that it takes full account of the nonlinear space charge in the external space. In the 
variational calculation, we use locally defined basis sets, that is, interpolants within each cubic 
volume element. Fine mesh volumes are given the correct variational weight, ensuring the 
maintenance of accuracy through mesh transition regions. The potential and electric field are 
defined at each grid node. The potential inside each volume element is interpolated from the 
values at each of its vertices. 

The volume integrals are solved volume element by volume element. The potential (and electric 
field) at each point in the element is the sum of interpolants times the values at the nodes.  
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The potential inside each element is given by 

( ) ( )∑ φ=φ
i

ii
e z,y,xNz,y,x

(139) 

where “i” are the nodes of the element indexed by “e”, and the Ni are the interpolants. Note that 
each element has four interpolants per node, whose coefficients are the potential and three 
components of electric field at the node, as discussed in Section 3.5.1. 

We then have 

( ) ( )∑ φ∇=φ∇
i

ii
e z,y,xNz,y,x (140) 

which allows us to write 
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Where the indices (α,β) run over the potential and three electric field components at the nodes 
and their corresponding interpolants. Note that the Wiαjβ depend only on the shape of the volume 
element.  

The second term can be written 

( ) ∑∑ ∑∑
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The minimization can then be written as the matrix equation 
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This function is then expressed in terms of the vector, φ, of all nodal values and a sparse, 
symmetric, positive definite matrix W. The conjugate gradient solution to this problem requires 
that we be able to form the matrix-vector product Wφ, which we can do by adding up the 
contribution to Wφ from each finite element without ever forming (or storing) the sparse but 
extremely large matrix W.  

The resulting system of linear equations is solved using the Conjugate Gradient approach. 

3.5.1 Continuous Field Interpolants 

Nascap-2k uses a finite element interpolation scheme that has strictly continuous electric fields. 
This approach insures the continuity of the electric field used to compute particle trajectories. 
Tri-quadratic interpolants were also considered, but experience showed that the difference in 
weight between the corner nodes and the edge-center nodes leads to a poorly conditioned matrix. 

The basic interpolation functions consist of functions (representing nodal potentials) that have 
unit value and zero slope at their home nodes, and zero value and slope at opposite nodes:  
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and functions (representing nodal electric fields) that have zero value and unit slope at their 
home nodes and zero value and slope at opposite nodes:  
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(145) 
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The coefficient of F corresponds to the potential at the home node, and the coefficient of G 
corresponds to the (negative of the) electric field at the home node. (In the element interior, both 
F and G are needed to calculate potential and potential gradient.) 

The functions F0 and G0 are shown in Figure 19. It can be verified that these functions can 
exactly reproduce constant, linear, and quadratic potentials.  

Figure 19. Interpolation Functions Fo and Go. 

We generalize to three dimensions by assigning to each corner of the unit cube four interpolation 
functions corresponding to the potential, x-component of potential gradient, y-component of 
potential gradient, and z-component of potential gradient for that node. The interpolants 
corresponding to node ijk are then given by 
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The coefficients of the N0 interpolants are the node potentials, and the coefficients of the N1,2,3

interpolants are the negative Cartesian components of the nodal electric fields. We elect to omit 
the higher order terms of the form GFG or GGG. 

The potential inside each element is given by 

( ) ( )∑
α

αα φ=φ
ijk

ijkijk z,y,xNz,y,x (147) 

and the components of the electric field are given by 

( ) ( )∑
α

αα ∇φ=
ijk

ijkijk z,y,xNz,y,xE  (148) 
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3.5.2 Interpolating Potentials and Fields for Special Elements  

Special elements are those elements which contain surfaces. Because surface-containing 
elements are not empty cubes, the potential interpolation functions described in the previous 
section cannot be straightforwardly applied. To develop finite element matrices for these 
elements, we require a prescription for calculating the potential and electric field in the element 
interior. Note that a special element is bounded by three types of surfaces: (1) square surfaces 
bounded by grid edges and shared with adjacent (presumably empty) elements; (2) object 
surfaces; and (3) surfaces bounded by both object points or edges and grid points or edges. On 
type (1) surfaces we use the potential and field interpolation described in the previous section. 
On object surfaces, the potential and electric field must be expressed in terms of the object’s 
surface element potentials and normal fields. Type (3) surfaces must smoothly blend between the 
two. We describe below an algorithm to express the potential and field at any point in the 
element volume in terms of the grid point potentials and fields, and the surface element 
potentials and normal fields. The algorithm has the property that, when applied to an element 
with six type (1) surfaces, it reproduces the empty cube result exactly.  

Let R be a point in a volume bounded by a set of surfaces {S}, each of which may be a triangle 
or a planar convex quadrilateral. For a given S, let P be the point on S nearest R, let φ(P) and 
E(P) be the potential and electric field at P, and n be the unit normal (from the surface point P 
into the volume) to the surface. Let  
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where AS is the area of surface S and KS is its weighting function.  

Let l be the distance from P in direction n to the next surface intersection. (In practice, it is 
adequate to extend l to the intersection with the surface of the rectangular parallelepiped 
bounding the volume.) Then the contribution of S to the potential at R is 

 [ ]))(/l)(1()()N/K()( SS nE(P)ndndPR •••−−φ=φ  (150) 

and the total potential is found by summing the contributions from all surfaces.  

The electric field is found by differentiating the above. The contribution of S to the electric field 
is  

 [ ] [ ])()l/21()()N/K()K/)KN/N SSSSS nE(P)nndPE ••−+φ∇−+∇−∇φ=  (151) 
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Where )(Pφ∇  is taken tangential to the surface, and is calculated using the continuous field 
interpolants if S is a full square in empty space, and otherwise using linear interpolation for 
triangles and bilinear interpolation for quadrilaterals. 

This approach allows us to interpolate surface fields and potentials on bounding surfaces in a 
manner that maintains the continuous electric field property. Potentials and normal field 
components are defined at the centroids of the original object surfaces and area-weighted 
averaged at surface corners. Potentials, normal fields, and tangential field components at all 
surface points that are vertices of bounding surfaces are expressed as linear combinations of 
centroid potentials and fields.  

3.5.3 Boundary Conditions 

Most often we use a zero potential boundary condition at the outer boundary of the 
computational grid. For some problems, specifically, Laplacian potential and linearly Debye 
screened potentials, a different approach is desirable. For these problems, we apply boundary 
conditions by extending the problem beyond the computational box using external elements 
whose inward boundary is a quarter-boundary-surface-element (QBSE) containing one problem 
node and which extends radially outward from the center of the computational box (to which we 
henceforth refer as “the origin”). (See Figure 20.) These elements are added to the sum over all 
volume elements. We ignore potential variation over the QBSE, assuming it to have the potential, 
φnode, of its problem node, so that this element makes a diagonal contribution to W. Within that 
approximation the new external element subtends solid angle Ω=¼x2/R2, where the QBSE is 
normal to the x-axis at distance x from the origin, and R is the distance of the center of the QBSE 
from the origin. (R and x are measured in outer grid units.) The potential in the element is 

( )( )Dnode Rrexp
r
R)r( λ−−






φ=φ , (152) 

for Debye length λD. We can now proceed to evaluate the needed integrals. For the Laplacian 
(λD=∞) case we get 
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so that after properly taking account of the mesh spacing, L, the external element’s contribution 
to the matrix element is 

)R/x(LW 2
4
1

VV = (154) 

where x and R are measured in units of L. 
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Figure 20. An Extended Element With Analytically Extrapolated Potential is Appended to Each 
Boundary Quarter-Square to Implement Non-Zero (Monopole) Potential Boundary Conditions. 

For the case of finite Debye length, the evaluation contains more terms and involves integrals 
that cannot be expressed in closed form, so we approximate 
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to eventually get 
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where ρ=R L/λ. 

It is recommended that zero potential boundary conditions be used if λ is comparable to or 
shorter than an outer grid mesh unit, and for most particle tracking problems for which no clear 
value exists for the Debye length. 

3.6 Space Charge Stabilized Poisson Iteration  

Poisson’s equation can be written dimensionlessly as 

 ( ) 2
ei

2 nn Λ−=Φ∇−  (157) 

where  
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Λ is the dimensionless Debye length, No is the ambient plasma density, ni = Ni/No, ne = Ne/No, 
and the Laplacian is also normalized by L2.  
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The traditional approach to the solution of Equation (157) has been an explicit iteration of the 
form 

( ) ( )( )1
e

1
i

22 nn −ν−ν−ν Φ−ΦΛ=Φ∇− (159) 

where ν is the iteration index and the charge density is determined using the potentials of the 
previous iteration. This method can be shown to be unstable38 when the Debye length, λD, 
becomes small with respect to other scale lengths of the problem. This can be understood by 
considering that a smooth potential variation over a distance of, say, 1000, would require a 
smooth φ∇2  which is, in turn, given everywhere by the charge density. Maintaining a smooth 
charge density distribution is difficult when any errors in determining (ne–ni) are multiplied by a 
huge Λ-2. There is one effective remedy to this dilemma described in Parker38, but the process 
reported here appears to be more efficient in the short Debye length limit. This method involved 
the combination of two concepts. One uses a partial implicitization of the repelled density39. The 
other simply reduces the charge density to an acceptable level whenever the first method is 
inadequate. An “acceptable level” means a value not so great that it will cause spatial oscillations 
in the potential. 

3.6.1 Implicitization 

The right hand side of Equation (157) is the dimensionless charge density. 

( )( ) ( ) ( )( )νν−ν Φ−ΦΛ=Φ ei
2 nn,q rr (160) 

The charge density at the present iteration may be linearized about the previous potential 
iteration 

( ) ( ) ( )( )1 1 1q q qν ν− ν− ν ν−′Φ ≅ Φ + Φ Φ − Φ

where 
Φ∂

∂
=′ qq , and the r dependence has been dropped for clarity. With this expression, we

may write the implicit Poisson iteration scheme 

( ) ( ) ( )2 1 1 1 1q q qν ν− ν ν− ν− ν−′ ′−∇ Φ − Φ Φ = Φ − Φ Φ
(161) 

Though it is not immediately obvious, the implicit character of Equation (161) makes it more 
stable than the scheme expressed in Equation (159) provided q′  is constrained to be non-
negative. This can be understood by realizing that in Equation (159) the charge density is treated 
as an independent variable, whereas in Equation (161) the charge density is determined 
simultaneously with the potential. 

The finite element approximation to Equation (161) produces the matrix equation 
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 ( ) 1e

e

eee SSS −νν ′−=′−∑ ΦΦVW  (162) 

where (e) refers to each element, W (which produces the square of the electric field) corresponds 
to the Laplacian operator, V (which produces the square of the potential) corresponds to the 
screening matrix, and the coefficient of the screening matrix, S, is derived from q by the 
following analysis. 

3.6.2 Charge Limiting 

For Λ≥ 1, S is simply the total charge associated with each node, Q. (Because the Debye length 
is longer than the grid resolution, an entire grid cube of plasma with one species eliminated alters 
the potential by no more than the temperature.) However, for Λ << 1, numerical noise and 
features like a sheath edge, which may span only a few λD, become incorrectly amplified when 
the q determined at a point becomes multiplied by the entire nodal volume. When it is not 
possible to reduce the volume element size, stability can be preserved by replacing Q (and Q΄) 
with a reduced value S, (and S΄) which is limited by the maximum allowable charge for the 
element.  

Because of the artificial amplification argument, S is often the more realistic total for an element, 
in the sense that it produces potential variation appropriate to the spatial resolution rather than 
causing unphysical overshoots. Before deriving S, we define the barometric potential Фb = ln(ni), 
which (in cases where electron density is governed by the Boltzmann factor, eФ) is the potential 
for which Q = 0. (For the “Linear” and “Nonlinear” space charge density formulations, the ion 
charge density is also dependent on the potential. For these cases, the barometric potential as 
used here is zero, Фb = 0.) Note that it is important that S→ Q as Ф → Фb if quasineutral regions 
are to be modeled correctly. To determine S, consider a capacitor with potential difference  
Фb – Ф, area L2, and a separation of L. The charge qc on this capacitor is given by  

 ( ) θΦ−Φ
ε

=∆= e
Le
LVCQ b

2
o

c  (163) 

We could then set the maximum allowable charge per element to be  

 ( )Limit bq = α Φ − Φ  (164) 

with the parameter α, set to the maximum value consistent with the stability of the Poisson solver. 
Thus at each node, the charge would be 

 ( )q,qminS imitL=  (165) 

with 
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However, this algorithm can easily give a discontinuous value for S΄, which could lead to 
numeric instabilities.  

In practice a different formulation is used. If a problem has been specified where a boundary 
potential would be screened in less than an element or two (the limit of any code’s resolution), 
sufficient sheath charge is redistributed to allow the potential to be screened over the minimum 
number of elements that is consistent with stability. Consider the solution of the Helmholtz 
equation in a single, linear zone. The variational principle for the Helmholtz equation is 
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The squared-gradient term is minimized by a constant potential, whereas the squared-potential 
term is minimized by going symmetrically through zero. So, there must be some minimum value 
of Λ for which the solution does not change sign. Minimizing the variational function on the 
interval [0, 1] with respect to Φ(1) when Φ (x) = (1-x) Φ (0)+x Φ (1) gives 
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Λ
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Λ
−

Φ=Φ (168) 

so that the condition for non-oscillatory potentials becomes 16 2 >Λ . Thus if the charge is 
artificially constrained so that the Debye length is greater than L45.2L6 = , the Poisson 
solution is stable. 

For each charge density formulation, a computational temperature is defined and used so that the 

Debye length analog, λ, defined by 2
0

λ
φε

=
φ∂
ρ∂

− , is no less than a user specified fraction (usually 

½) of the local mesh spacing. The formulas for S and S΄ for each charge density formulation 
appear in Section 3.6.5.  

3.6.3 Analysis of the Space Charge Stabilized Poisson Method 

The charge stabilized Poisson method calculates for each node the maximum allowable charge 
that is consistent with the stability of a linearly interpolating Poisson solver. This method is 
developed above, but a further analysis is presented here to help the user interpret its impact. 

Nascap-2k’s charge stabilization is accomplished through the process of charge limiting, 
illustrated in Figure 21. This figure shows two charge-versus-potential curves for the case where 
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the ion density is fixed (tracked or equal to the background density) and the electron density is 
barometric. Equation (161) is rewritten as 

( )( )m bq exp exp exp= α −Φ Φ − Φ  (169) 

where ( )22
Debyem Lln αλ=Φ  α is user specified and Φb is the barometric potential, Фb = ln(ni). 

For curve q1, Фb = -3.0 (ni = 0.05); for curve q2, Фb = 0.0 (ni = 1.0) and for both curves Фm = -
2.2, and α = 1. For each curve, the limiting charge as given by Equation (164) is also shown. The 
limiting charge is rewritten here as  

qLimit = α (Φb –Φ) (170) 

which intersects the “natural” charge curves at Фc and Фb. The charge stabilization method 
reduces the charge to the limiting value when Ф > Фc and uses the natural charge for Ф < Фc. 
The parameter Фm provides a good measure of the limiting process. From Figure 21 it can be 
seen that Фm is the point at which the slope of the natural charge curve equals that of the limiting 
charge line. Figure 22 shows a family of curves giving the dependence of the cutoff potential Фc 
on the barometric potential for various values of Фm. These curves were obtained by numerically 
solving for the zeros of the difference between q and qLimit. This difference equation always has 
two solutions, one at Фc and one at Фb, with the exception of a degeneracy at Фc = Фb = Фm, 
which is indicated in the figure. This figure shows that the charge limiting is minimal for Фm > -1, 
and quite severe for Фm < -6 or so. 

Figure 21. Plots of Space Charge (Curves q1 and q2) as a Function of Potential as Given by 
Equation (161). The Straight Lines Represent the Maximum Allowable Charge for Non-oscillatory 
Potentials. The “Natural” Space Charge, q1 or q2 is Acceptable for Cases for Which Slopes of the 
Curves and the Corresponding Line Are Equal. 
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Figure 22. Plot of the Space Charge Cutoff Potential, Φc, Versus Barometric Potential (Φb = ln ni) 
for a Series of Φm Values (-02, -0.5, -1.0, -2.0, -3.0, --4.0 … -11.0). The Point at Which Φm = Φb = Φc 
is Also Indicated.  

3.6.4 Sheath Boundary Potential 

Space charge limiting must be accounted for when choosing the sheath boundary potential. 
Space charge limiting limits the rate at which space charge can cause the potential to drop.  

Consider the first volume element of a sheath to satisfy the laws of Child and Langmuir (planar 
space charge limiting). At the sheath edge (z=0) and one element in (z = L) the potential and 
electric field are given in Table 1. 

Table 1. Potential and Electric Field Variation Given by Planar Space Charge Limiting. 

Position L 

Potential K(L)4/3 

Electric field (4/3)K(L)1/3 

By Gauss’s law, the charge per unit area in this element is given by 

( ) 31

o
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Nascap-2k computes the charge density to be limited by (α/L2) times the mean potential 
(assuming linear interpolation), and so gets 

( )( )34
2

o

LK0
2
1

L
L

A
Q

+





 α

=
ε (172) 

Equating these two expressions gives α = 8/3. 

Because of the requirements of disk space and computational time of three-dimensional codes, 
Nascap-2k is frequently operated at high Фm values, i.e., a coarse mesh with respect to the Debye 
length. In these cases charge is removed at almost all points. Ideally, the charge that was 
removed was excess charge generated by the coarse gridding. This is the artificial charge 
amplification argument. However, since Nascap-2k must be reliably stable, the result is that too 
much charge is often removed. This results in an enlarged sheath thickness for high negative Фm 
problems. In order to compensate for this sheath enlargement, the sheath boundary potential must 
be adjusted.  

Equating the above equation to the code resolution, L, gives 

( ) θλ=θ×=φ − 34
D

3231346
x L74.0nL101.5 (173) 

The potential φx may be interpreted as the potential below which Nascap-2k underestimates 
screening. At best, beyond the φx contour, the potential drops about one order of magnitude per 
element. For θ = 0.1 eV, n = 1011m-3, and L = 0.2 m, we find φx = 6 V. If the 6 V contour is correctly 
placed, the 0.6 V contour lies at least one element beyond (at the approximate sheath location), and 
the default sheath contour (0.07 V) is yet another element farther. This would produce a sheath area 
that is too large. The suggested criterion for the sheath boundary potential is 

( )xSB 24.0,2lnMax φθ=φ (174) 

where 0.24 = e-1.0/0.7 is the planar screening per element allowed by Nascap-2k. Note, however, 
that φx depends strongly on the grid in which the sheath is found, so that if an increase in object 
potential moves the sheath from grid 3 to grid 2, a corresponding larger value of φSB should be used. 

3.6.5 Charge Density and Derivative in Nascap-2k 

Nascap-2k has a selection of eight different expressions to describe the charge density for 
different kinds of problems. Each expression uses implicitization and charge limiting to a 
different extent. As there is no space charge for the Laplace space charge option, the following 
discussion does not apply to that case. The expressions used for the space charge and its 
derivative including limiting are listed below. 

The parameter D is the local mesh spacing, L, divided by the user provided Debye limiting 
value, which defaults to 2. The parameter g is the maximum of plasma density reduction factor 
computed by neutral wake model (0<g<1) and 10-6.  
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Laplace. The Laplacian space charge option specifies that the charge density is zero and no 
space charge limiting is needed. 

o

0ρ
=

ε
( )od

0
d
ρ ε

=
φ (175) 

i.e., charge exists only on object surfaces and external boundaries, as determined by the
boundary conditions. Space charge iterations may still be required, however, for numerical 
reasons. 

Linear (Debye Shielding). The Linear space charge option solves the Helmholtz or Debye-
Huckel equation: 

2
o nl

ρ φ
= −

ε λ (176) 

λnl
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−

Nonlinear. Nonlinear space charge is appropriate for most low-Earth-orbit type plasmas in the 
presence of high applied potentials. Poisson’s equation is solved with space charge given by: 

( ) ( )( )2
0 nl 3/ 2

nl

max 1,C ,E
/ /

1 4

φ
ρ ε = − φ λ

+ π φ θ (177) 
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The term C(φ,E) (analytic focusing) comes from fitting a finite temperature spherical (Langmuir-
Blodgett) sheath. If analytic convergence is turned off (on the Potentials Advanced screen) then 
C(φ,E) is set to zero. Additional adjustments are made to the convergence portion of this formula 
for significant values of velocity. 
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Note that the derivative of the convergence contribution to the charge density with respect to the 
potential is assumed to be negligible. 

Frozen Ion. The Frozen Ion formulation is intended for short timescale (typically sub-
microsecond) problems for which it is a good approximation to assume that ions remain 
stationary and at ambient density (“ion matrix” approximation), but electrons achieve barometric 
equilibrium. The space charge function depends on the mesh-dependent potential, φ1 < 0, which 
satisfies 

( ) ( ) ( )2
1 11 exp / D− φ θ = − λ φ θ  (179) 

for D>λ. Otherwise, φ1=-1×10-6. The meaning of this quantity is that the charge density increases 
linearly at a stable rate for negative potentials between zero and φ1, and then asymptotes to the 
ambient ion density for potentials more negative than φ1.  

The space charge is then given by 
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The derivative of charge with respect to potential appears in the variational function as a 
coefficient of φ2. If this is too large, then minimizing φ2 means you oscillate from one grid point 
to the next in order to get lots of intermediate zeroes, which is not a satisfactory solution. 

Barometric . The Barometric algorithm is appropriate for cases in which all the surfaces are at 
potentials comparable to or below the plasma temperature (or negative) and there is a region of 
low density, such as a plasma wake. The ion density is taken as the plasma density decreased by 
the wake factor g. If the ions are sufficiently dense, quasi-neutrality requires the potential to be 
the “barometric” potential, φb (defined below). However, because the plasma may be under-
dense or influenced by nearby surfaces, the electron density must be allowed to differ from the 
ion density. We take the electron density to be given by the expression 
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Full Trajectory Ions. Ion densities are calculated from steady-state ion trajectories. Electrons 
are barometric.  
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Hybrid PIC. This algorithm is used for timescales (typically sub-millisecond) for which it is 
practical to treat ion motion, but electrons may be considered in barometric equilibrium. The ion 
density is computed from actual ion macroparticles. The electron charge density is barometric for 
negative potentials and increases linearly (orbit limited) for positive potentials.  
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When the potential is near the barometric potential ( )1b θ<φ−φ , space charge limiting is not 
needed, and θhp is θ. When the potential is far from the barometric potential ( )b2 φ−φ<θ , the 
effective temperature used is the space charge limited value. At intermediate potentials, the 
effective temperature varies linearly. 
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0
hpθ is the value of θhp at 0=φ  and is only needed for positive potentials.
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Full PIC. For this option, it is assumed that the total charged density (electron and ion) was 
previously computed and stored. 

ρ = ρtracked (190) 
( )od

0
d
ρ ε
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3.7 Macroparticles 

Macroparticles represent either current or charge. Macroparticles that represent current are used 
for steady-state problems and ones that represent charge are used for dynamic problems. 
Macroparticles are also used for visualization.  

3.7.1 Macroparticle Creation 

When macroparticles are created at a sheath surface, the sheath surface is divided into triangles 
and a macroparticle representing the current from that section of the sheath is created at the 
center of the triangle.  

When macroparticles are created at the problem boundary, the outer surface of each grid 
boundary volume element is divided into squares (of size requested by the user) and a 
macroparticle is created at the center of each square to represent either the current through that 
area (“Boundary” and “BField”) or the charge passing through that area during a user specified 
time (“Boundary Injection”). 

When macroparticles are created throughout the volume (for uniform charge density 
initialization or charge exchange), they are created at points appropriate to the weighting 
functions.  

When macroparticles are created at user specified locations with user specified velocities, each 
macroparticle represents current. 
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When macroparticles are created on surface elements, the surface is divided into the requested 
number of quadrilaterals and triangles and macroparticles are created at the center of each. The 
macroparticles are distributed evenly in velocity, azimuthal angle, and cosine of the polar angle. 

For visualization only, macroparticles can also be created at the intersection of the sheath surface 
and a user specified plane. 

3.7.2 Macroparticle Tracking 

Macroparticles are tracked using a third order energy conserving algorithm. 
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The electric field is that at the location of the macroparticle determined by interpolation from the 
nodes of the volume element. The magnetic field is the sum of a constant, uniform field supplied 
by the user and the sum of all the magnetic dipoles defined during object definition. As the field 
sources are not, in reality, point dipoles, if a macroparticle is within 1 cm (0.01 m) of a dipole, 
that dipole’s contribution to the particle’s magnetic field is calculated as if it were 1 cm away. If 
the macroparticle is within 1 mm (0.001 m) of a dipole, the contribution of that dipole is set to 
zero. 
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Here, p and ro are the dipole moment and location and n̂  is a unit vector from r to ro, 

Macroparticles are tracked for a timestep, which can be as long as a minute for static problems or 
as short as microseconds for dynamic problems. The timestep is divided into substeps such that 
the macroparticle can travel no more than a fraction of the local mesh size in a single substep. By 
default the fraction is 0.1; the user may specify an alternative value. The particle’s total energy is 
calculated at the beginning of the timestep and preserved during the timestep. Changes in 
potential between timesteps are reflected by a change in the particle’s total energy. 
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If the macroparticle represents charge, at the end of each timestep and optionally at the end of 
each substep, the charge and current are assigned to the nodes of the element the macroparticle is 
in, using the same weights as the potential. The charge density (charge divided by element 
volume) is assigned to the element. If the assignment is performed at the end of each substep, the 
charge assigned is divided by the fraction of the timestep that the substep represents.  

If the macroparticle represent currents, at the end of each substep its charge density (current 
times substep time) is optionally assigned to the element within whose bounds the macroparticle 
is located.  

When a macroparticle impacts a surface element, its current or charge is assigned to the surface 
element.  

3.7.3 Macroparticle Splitting 

Macroparticles are split both to avoid having heavy macroparticles in well-resolved regions and 
to simulate a thermal distribution. Macroparticle splitting has been implemented for 
macroparticles read from an external file, for a uniform distribution of macroparticles for 
initialization, and for macroparticles injected from the boundary. Macroparticles can also be split 
when entering a more finely resolved grid. 

The following general principles are used in generating the smaller replacement macroparticles. 

1. Macroparticles are split in velocity space only. Because particles frequently need to be split
in high-field regions, spatial splitting would raise problems with energy conservation.

2. To be split in velocity space, a macroparticle must carry a temperature. We assume the
temperature is always isotropic. The fission products carry half the temperature of the
original macroparticle, while the remaining thermal energy appears as kinetic energy of the
split macroparticles.

3. For splitting purposes, we define the Z-axis to be along the direction of the macroparticle
velocity, the X-axis randomly chosen in the plane normal to Z, and the Y-axis mutually
perpendicular.

4. We split into two or three macroparticles with added velocity along each axis, except that we
may elect not to split along the Z-direction if the kinetic energy exceeds the thermal energy.
Not splitting along Z helps ameliorate macroparticle proliferation, but makes an error by not
preserving the original macroparticle temperature along Z. We thus end up with eight, nine,
or twenty-seven new macroparticles.

5. Macroparticle velocity is assumed to be acquired by acceleration rather than actual drift (i.e.,
spacecraft velocity). If there is actual drift (e.g., ram velocity), then the drift velocity is
removed before splitting the macroparticle, and added back after.
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6. If the macroparticle with speed u0 is split by two along the X or Y axis, the new velocity is
me707.0 θ± . Along the Z axis, the velocity increment is calculated as if the temperature 

were 
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7. If the macroparticle with speed u0 is split by three along the X or Y axis, there is a zero-
velocity central macroparticle and two “probe” macroparticles with velocity me866.0 θ± .
Along the Z axis, the velocity increment is calculated as if the temperature were
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Examples of the effects of macroparticle splitting appear in Reference 40. 

3.7.4 Reverse trajectory technique to compute currents to detectors 

In the reverse trajectory approach, the current is determined by an integral over the thermal 
distribution of the incident charged particles. The flux to a specific location between θmin and 
θmax of the normal and with speeds between vmin and vmax is given by the integral41 
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where v, the velocity incident on the detector, is expressed in spherical coordinates (v, ϑ , φ) 
with respect to the surface normal, v∞ is the velocity at infinity, and U is the ram velocity. 
Portions of phase space for which v∞ does not exist, do not contribute to the integral. The v∞ 
value corresponding to a v exists only when the trajectory of the particle with incident velocity v 
connects with infinity, i.e., exits the computational space. Energy conservation relates the 
magnitude of v∞ to that of v,  

φ+=∞ ev
2
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2
m 2 (195) 

where φ is the detector surface potential. The exponent includes a dot product, and is therefore a 
function of the angle between the velocity vector at infinity and the ram vector. It is a 
complicated function of v and in this technique is determined by tracking macroparticles.  

When written as a sum, the above integral is 
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This quantity is computed by generating and tracking a distribution of macroparticles with initial 
velocities distributed in each of v, cosθ, and φ and with weight 
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. The contribution of each macroparticle is the product of 

its weight and ( ) 
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mexp Uv where v∞ is the velocity when it exits the computation

space. Those macroparticles that intersect the object do not contribute. 

3.8 Particle-in-Cell Tools 

3.8.1 Transverse Surface Currents 

We developed a pseudopotential approach (similar to the velocity potential used to describe 
potential flow42 in fluid dynamics) to the solution of the current continuity equation for the 
computation of transverse surface currents on a spacecraft acting as an antenna. As a boundary 
condition, one surface element of each antenna element is specified as connected to the biasing 
power supply, and the solution provides the required current. The vector transverse surface 
current in each surface element is that which provides the best fit to the edge currents. 

A solution having no circulating currents is guaranteed if we assign a pseudopotential value to 
each element of surface and take the current across their common edge to be proportional to the 
difference in their pseudopotentials. (In that case, current that flows “downhill” would need to 
flow back “uphill” in order to circulate.) The current is also taken as proportional to the edge 
length and inversely proportional to the distance between the centers of the elements. 

The result of the above treatment is a matrix that multiplies the vector of pseudopotentials to 
describe the buildup of charge in the surface elements, which is then set equal to the source 
vector generated from Nascap-2k results at each timestep. This system of equations is then 
solved using the ICCG (Incomplete Cholesky Conjugate Gradient)43 algorithm. 

Figure 23 shows graphically the quantities that make up the surface current equation for each 
surface element. Moving the surface currents to the left side of the equation, and all other 
(known) quantities to the right, and expressing the edge currents as proportional to 
pseudopotential differences, results in a sparse symmetric matrix that is amenable to solution 
using the ICCG algorithm once the surface element connected to the power supply (denoted the 
“injection element”) is set to a fixed pseudopotential. The current required to bias the conductor 
may be obtained by evaluating the equation associated with the injection element and can be 
verified to be the sum of the total change in charge less plasma currents for all the remaining 
surfaces of the conductor. Surface currents are solved separately for each electrically isolated 
component. 
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Figure 23. The Change in Charge on a Surface Element is Comprised of Plasma Currents and 
Surface Currents. 

3.8.2 Propagating Fields 

The transverse surface currents, the volume ion currents computed during particle tracking, and 
the volume electron currents computed from tracking or saved in the database by an external 
code, are a source of propagating electromagnetic fields. Nascap-2k can compute the magnetic 
field, the vector potential, and the rate of change of the vector potential from these currents.  
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where the sums are over the surface elements (i) and volume elements (k) and tm is the time at 
the present timestep, and P(r,t) is the Poynting vector. 
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LIST OF SYMBOLS 

The symbols in the following table are used in this document. 

bi Range parameters 

d Thickness or distance 

e Magnitude of the electron charge (1.60 × 10-19 C) 

f Distribution function 

g Reduction in plasma density in wake in the absence of surface potentials 

i and j and 
k and m 

Indices 

jth Plasma thermal current 

jx Component of the current 

l Length 

m Particle mass 

n Component density 

na Ambient plasma density 

n Surface normal or unit vector 

p Magnetic moment 

q Charge on a surface or particle charge 

qi Range parameters 

r Distance or location in space 

ro Location of magnetic moment 

s Axes of sun pointing coordinate system 

t Time 

v or v Velocity 

u or v Parameters in BEM 

x or x Position or path length 

y Substitute integrand 
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A Area or Point of triangle in BEM discussion 

A BEM or pseudopotential matrix 

B and B Magnetic field and magnetic field magnitude or point of triangle in BEM discussion 

Bmax Estimate of maximum possible barrier height to the escape of photoelectrons 

C Capacitance or point of triangle in BEM discussion or Convergence factor or coefficient 

DCL Child Langmuir distance 

D Electric field (in Maxwell equation) 

E Particle energy in eV 

E and E Electric field and electric field magnitude 

Eo Parameter of Gaussian component of Fontheim distribution function 

E1 Barrier height to escape of photoelectrons 

Emax Energy at which secondary yield due to normally incident electrons peaks 

Ex Barrier to electron collection for analytic current collection 

F Flux or interpolant 

F BEM matrix 

G BEM matrix 

H Heaviside step function 

G Interpolant 

I Current (amperes) 

I Current vector 

Isun Relative sun intensity 

J Current density vector 

L Mesh spacing or lower limit of energy or velocity integral 

N Number of nodes of surface element 

Ni Interpolant 

P or P Point of triangle in BEM discussion or point in volume or Poynting vector 
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Q Finite element matrix 

R Resistance or Sphere radius or Escape depth (range) or point in volume 

S Surface area or Stopping power or Surface index or reduced charge density 

∆T Time interval 

Τ Pairwise scalar products in BEM 

U Velocity of plasma with respect to spacecraft, -Vsc 

V Volume or BEM coefficients 

Vsc Spacecraft velocity 

W Finite element matrix 

Y Yield 

Z Atomic number 

α Parameter used in ion secondary yield or Parameters used in space charge limiting or parameter used 
to specify power law component of Fontheim distribution function 

β Parameter used in ion secondary yield 

χ Angle between flow vector and the particle velocity 

δmax Peak yield for normal incidence 

εο Permittivity of vacuum (8.854 × 10-12 F m-1) 

ε Relative dielectric constant 

φ Surface potential or Space potential 

φb Barometric potential 

η Backscatter coefficient or Fraction of the distribution 

κ Parameter used in kappa distribution function 

λD Debye length 

ν Iteration index 

θ Plasma temperature in eV 

ρ Resistivity or Charge density 
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σ or σ Surface charge density or conductivity tensor 

σCEX Charge exchange cross section 

ξ Small number used to evaluate current integral 

ψ Incident angle or Angle between neutralizer axis and look direction or pseudopotential 

ζ Coefficient in Fontheim formula 

∆gauss Parameter of Gaussian component of Fontheim distribution function 

∆φ Difference in potential across dielectric layer 

Φ Potential vector 

Ω Solid angle 
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